研究生: |
游志弘 Yu, Chih-Hung |
---|---|
論文名稱: |
擴增實境對建構與操弄立體心像之影響 – 以三視圖學習為例 Effects of Augmented Reality on Constructing and Manipulating Mental Imagery: Learning Orthogonal Views as an Example |
指導教授: |
吳正己
Wu, Cheng-Chih |
學位類別: |
博士 Doctor |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 擴增實境 、三視圖 、認知負荷 、心像 |
英文關鍵詞: | Augmented Reality, Orthogonal Views, Cognitive Load, Mental Imagery |
DOI URL: | http://doi.org/10.6345/NTNU202001529 |
論文種類: | 學術論文 |
相關次數: | 點閱:243 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三視圖是數學空間幾何中的重要概念,學習三視圖可訓練學生建構與操弄立體心像,有助於空間能力的培養。初學者往往因工作記憶容量有限無法正確建構及操弄心像,導致學習成效不佳。擴增實境可提供虛擬資訊以補充實體的不足,它有助於三視圖概念的理解與培養空間能力,然而對是否有助降低認知負荷則未有定論。本研究旨在發展一套輔助初學者學習三視圖的擴增實境工具(AR-LOV),並以前後測準實驗設計,探討初學者使用AR-LOV對其學習表現、認知負荷與學習態度之影響。實驗參與者為99位國小六年級學生,實驗組學生51人,使用AR-LOV輔助學習;控制組學生48人,未使用AR-LOV輔助學習。實驗共收集學生三視圖前後測成績、認知負荷、態度問卷、及課後焦點訪談等資料。
研究結果顯示:(1)AR-LOV可作為學習三視圖的鷹架,有助於學生理解視圖,與協助學生於認知歷程中維持心像;(2)使用AR-LOV未能有效降低學生依三視圖想像立體圖形時的認知負荷;(3)學生對使用AR-LOV學習持正向態度。建議未來研究可針對擴增實境與認知負荷的關係做更深入的探討,並發展擴增實境工具輔助學生多次及複雜心像的操弄;教學設計上應給予學生充足時間使用AR-LOV,並進一步探討對其他學習面向(如學習動機、學習信心)的影響。
Learning orthogonal views helps students construct and manipulate their mental imagery and improve their spatial ability. Novices often find difficulty in manipulating mental imagery due to the limit of individuals' short-term memory capacity. Previous studies showed that augmented reality (AR) could help students understand orthogonal views and improve their spatial ability. However, the effects on how AR learning experiences may facilitate students' cognitive process is not clear. The purpose of this study is to develop an AR application (AR-LOV) to facilitate novices learning orthogonal views, and to explore its effects on students’ learning performance, cognitive load, and learning attitudes. A quasi-experimental research design was conducted. Ninety-nine 6th grade students participated in this study. Fifty-one students learning orthogonal views using AR-LOV served as the experimental group, whereas forty-eight students learning orthogonal views without using AR-LOV served as control groups. Data collected and analyzed in this study includes students' performance scores, cognitive loading scores, answers to attitude questionnaire, as well as post-experiment interviews.
The results revealed that (1) AR-LOV can be an effective scaffold for learning orthogonal views; (2) no significant differences in cognitive load between the two groups, which might be due to the insufficient time for students to use AR-LOV while learning; (3) students exhibited a positive attitude for using AR-LOV to learn orthogonal views. It is suggested further studies to explore the relationships between AR and cognitive load in depth, to develop AR tools to help students manipulate multiple-transformed and complicated mental imaginaries, to provide students with sufficient time when applying AR-LOV in learning, and to investigate how AR-LOV may affect other dimensions of learning, such as motivation and confidence.
中文文獻
吳明郁(2004)。國小四年級學童空間能力學習的研究:以立體幾何展開圖為例: 國立台北師範學院數理教育研究所碩士論文。
吳書寯(2017)。應用擴增實境工具輔助國中學生學習空間幾何。國立臺灣師範大學碩士論文,未出版,臺北市。
林子婷(2020)。擴增實境工具輔助國中生學習三視圖。國立臺灣師範大學碩士論文,未出版,臺北市。
許思甯。(2006)。正投影電腦輔助教學教材之研究。北台學報,29。取自http://lib.tpcu.edu.tw/ezfiles/28/1028/img/138/1-4.pdf。
陳韻如、楊凱琳、林福來。(2018)。國小高年級學生在立方積木三視圖的推理表現。臺灣數學教育期刊,5(1),1-34。doi:10.6278/tjme.201804_5(1).001。
教育部。(2016)。十二年國民基本教育數學領域課程綱要。臺北:教育部。
董修齊、徐偉民。(2012)。國小幾何教材內容之比較:以臺灣與芬蘭為例。當代教育研究,20(3),39-86。
韓承靜、洪蘭、蔡介立。(2008)。心,眼與世界的連結─從認知神經科學看知覺與心像的關係。科學教育(308),16-23。
魏義鋒。(2002)。3D-電腦輔助繪圖在工程圖學之應用,雄工學報第四輯。
英文文獻
Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20(1), 1-11. doi:10.1016/j.edurev.2016.11.002.
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. Computer Graphics and Applications, IEEE, 21(6), 34-47.
Bako, M. (2003). Different projecting methods in teaching spatial geometry. Proceedings of the Third Conference of the European Society for Research in Mathematics Education, Italy. Retrieved from http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/ TG7/TG7_Bako_cerme3.pdf.
Baronio, G., Motyl, B., & Paderno, D. (2016). Technical drawing learning tool‐level 2: An interactive self‐learning tool for teaching manufacturing dimensioning. Computer Applications in Engineering Education, 24(4), 519-528.
Battista, M. T., & Clements, D. H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 258-292.
Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12.
Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational Studies in Mathematics, 11(3), 257-269. doi:10.1007/BF00697739.
Bocchi A, Carrieri M, Lancia S, Quaresima V, Piccardi L (2017) The key of the Maze: the role of mental imagery and cognitive flexibility in navigational planning. Neurosci Lett, 651, 146–150.
Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-17.
Br ̈unken, R., Seufert, T., and Paas, P., (2010). Measuring cognitive load. In J. L. Plass, R. Moreno, and R. Brünken (Eds.), Cognitive Load Theory (pp. 181–202). New York, NY: Cambridge University Press.
Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544. doi:10.1016/j.compedu.2013.02.017
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies: Cambridge University Press.
Chang, Y. (2014). 3D-CAD effects on creative design performance of different spatial abilities students. Journal of Computer Assisted Learning, 30(5), 397-407. doi:10.1111/jcal.12051
Chen, C.‐H., (2020) AR videos as scaffolding to foster students’ learning achievements and motivation in EFL learning. British Journal of Educational Technology, 51(3), 657-672.
Cheng, K.-H., & Tsai, C.-C. (2013). Affordances of Augmented Reality in Science Learning: Suggestions for Future Research. Journal of Science Education and Technology, 22(4), 449-462. doi:10.1007/s10956-012-9405-9
Christou, C., Jones, K., Mousoulides, N., & Pittalis, M. (2006). Developing the 3DMath dynamic geometry software: theoretical perspectives on design. International Journal for Technology in Mathematics Education, 13(4), 168-174.
Chu, M. H., Jeng, T. S., & Chen, C. H. (2015). ITOUYING: A serious game for learning orthographic projection. International Journal on New Trends in Education and Their Implications, 6(3), 148-164.
Clements, D. H. (2003). Teaching and learning geometry. J. Kilpatrick, W.G. Martin, D. Schifter (Eds.), A research companion to principles and standards for school mathematics, National Council of Teachers of Mathematics, Reston, VA (2003), 151-178.
Devolder, A., van Braak, J., & Tondeur, J. (2012). Supporting self‐regulated learning in computer‐based learning environments: systematic review of effects of scaffolding in the domain of science education. Journal of Computer Assisted Learning, 28(6), 557-573.
De Lisi, R., & Wolford, J. L. (2002). Improving children's mental rotation accuracy with computer game playing. The Journal of genetic psychology, 163(3), 272-282.
Dominguez, M. G., Martin-Gutierrez, J., Gonzalez, C. R., & Corredeaguas, C. M. M. (2012). Methodologies and Tools to Improve Spatial Ability. Procedia - Social and Behavioral Sciences, 51, 736-744. doi:10.1016/j.sbspro.2012.08.233
Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. Handbook of research on educational communications and technology (pp. 735-745): Springer.
Eyal, R., & Tendick, F. (2001). Spatial ability and learning the use of an angled laparoscope in a virtual. Med. Meets Virtual Real. Outer Space Inner Space Virtual Space, 81, 146.
Gardner, H. (1983). Frames of Mind. New York: Basic Books.
Gittler, G., & Glück, J. (1998). Differential transfer of learning: Effects of instruction in descriptive geometry on spatial test performance. Journal of Geometry and Graphics, 2(1), 71-84.
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. The Cambridge handbook of visuospatial thinking, 121-169.
Kalyuga, S. (2009). Knowledge elaboration: A cognitive load perspective. Learning and Instruction, 19, 402–410.
Katsioloudis, P., Jovanovic, V., & Jones, M. (2016). Application of Visual Cues on 3D Dynamic Visualizations for Engineering Technology students and Effects on Spatial Visualization Ability: A Quasi-Experimental Study. The Engineering Design Graphics Journal, 80(1), 1-17.
Kosslyn, S. M. (1978). Measuring the visual angle of the mind's eye. Cognitive Psychology, 10(3), 356-389. doi:10.1016/0010-0285(78)90004-X
Kosslyn, S. M., & Pomerantz, J. R. (1977). Imagery, proposition, and the form of internal representation. Cognitive Psychology, 9, 52-76.
Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural Systems Shared by Visual Imagery and Visual Perception: A Positron Emission Tomography Study. Neuroimage, 6(4), 320-334. doi:10.1006/nimg.1997.0295
Kyza, E. A., & Georgiou, Y. (2019). Scaffolding augmented reality inquiry learning: the design and investigation of the TraceReaders location-based, augmented reality platform. Interactive Learning Environments, 27(2), 211-225. doi:10.1080/10494820.2018.1458039
Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational psychology review, 22(3), 215-243.
Lin, H.-C. K., Chen, M.-C., & Chang, C.-K. (2015). Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interactive Learning Environments, 23(6), 799-810.
Lohman, D. F. (1979). Spatial Ability: A Review and Reanalysis of the Correlational Literature (No. TR-8). Stanford Univ Calif School of Education.
Lord, T. R. (1985). Enhancing the visuo‐spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405.
Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.
Mayer, R. E. (2005). The Cambridge handbook of multimedia learning: Cambridge university press.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
National Council of Teachers of Mathematics (2000). Curriculum and Evaluation Standards for School mathematics. Reston, VA: NCTM.
O'Craven, K. M., & Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of cognitive neuroscience, 12(6), 1013-1023.
Omar, M., Ali, D., Mokhtar, M., Zaid, N., Jambari, H., & Ibrahim, N. (2019). Effects of Mobile Augmented Reality (MAR) towards students’ visualization skills when learning orthographic projection. International Journal of Emerging Technologies in Learning (iJET), 14(20), 106-119.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4. doi:10.1207/S15326985EP3801_1
Paas, F., Tuovinen, J., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71. doi:10.1207/ S15326985EP3801_8
Paas, F. G., & Van Merriënboer, J. J. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human factors, 35(4), 737-743.
Paivio A (1986) Mental representations: a dual coding approach. Oxford University Press, New York
Palmiero, M., Cardi, V., & Belardinelli, M. O. (2011). The role of vividness of visual mental imagery on different dimensions of creativity. Creativity Research Journal, 23(4), 372-375.
Piccardi, L., Bocchi, A., Palmiero, M., Verde, P., & Nori, R. (2017). Mental imagery skills predict the ability in performing environmental directional judgements. Experimental Brain Research, 235(7), 2225-2233. doi:10.1007/s00221-017-4966-8
Pillay, H. K. (1994). Cognitive load and mental rotation: structuring orthographic projection for learning and problem solving. Instructional Science, 22(2), 91-113.
Pillay, H. K. (1998). Cognitive processes and strategies employed by children to learn spatial representations. Learning and instruction, 8(1), 1-18.
Pohlmann, M., & Silva, F. P. (2019). Use of Virtual Reality and Augmented Reality in Learning Objects: a case study for technical drawing teaching. International Journal of Education and Research, 7, 21-32.
Potter, C., & van der Merwe, E. (2001). Spatial ability, visual imagery and academic performance in engineering graphics. Paper presented at the International Conference on Engineering Education, Oslo, Norway.
Rafi, A., Samsudin, K. A., & Ismail, A. (2006). On Improving Spatial Ability Through Computer-Mediated Engineering Drawing Instruction. Educational Technology & Society, 9 (3), 149-159.
Reipschläger, P., & Dachselt, R. (2019). DesignAR: Immersive 3D-Modeling Combining Augmented Reality with Interactive Displays. Paper presented at the Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces, Daejeon, Republic of Korea.
Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on learning technologies, 7(1), 38-56.
Sinclair, N., & Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM, 47(3), 319-329.
Starcic, A. I., Cotic, M., & Zajc, M. (2013). Design‐based research on the use of a tangible user interface for geometry teaching in an inclusive classroom. British Journal of Educational Technology, 44(5), 729-744.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123–138.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education. Procedia-Social and Behavioral Sciences, 9, 938-942.
Tekin-Sitrava, R., & Isiksal-Bostan, M. (2014). An Investigation into the Performance, Solution Strategies and Difficulties in Middle School Students’ Calculation of the Volume of a Rectangular Prism. International Journal for Mathematics Teaching and Learning, 2-27. Retrieved from http://www.cimt.org.uk/journal/tekin2.pdf
Titus, S., & Horsman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57(4), 242-254.
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological bulletin, 139(2), 352.
Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education.
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
Western and Northern Canadian Protocol [WNCP] (2006). Common curriculum framework for k-9 mathematics. Edmonton, AB: Alberta Education.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17 (2), 89-100.
Yang, K.-H., Yeh, S.-C., & Tan, N.-C. (2014). A design-based research study on developing the teaching program of volume for elementary schools. Journal of Liberal Arts and Social Sciences, 10(3), 225-252.
Yu, D., Jin, J. S., Luo, S., Lai, W., & Huang, Q. (2009). A Useful Visualization Technique: A Literature Review for Augmented Reality and its Application, limitation & future direction. 311-337. doi:10.1007/978-1-4419-0312-9_21