研究生: |
林柔均 Lin, Jou-Chun |
---|---|
論文名稱: |
奈米晶體材料添加於有機-無機鈣鈦礦太陽能電池以改善其光轉換效率 Addition of Nanocrystals to Improve the Photo-Conversion Efficiency of Organic-Inorganic Halide Perovskite Solar Cells |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、二硫化鐵奈米晶體 、添加劑 |
英文關鍵詞: | Perovskite solar cell, FeS2 nanocrystal, Additive |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年,鈣鈦礦太陽能電池快速發展,其中溶液製程的平面異質接面鈣鈦礦太陽能電池被視為很有前景的低成本可再生能源技術。最常見的元件結構是FTO /TiO2/ CH3NH3PbI3-xClx /spiro-OMeTAD / Au。這種類型的太陽能電池主要困難在於鈣鈦礦CH3NH3PbI3-xClx薄膜的覆蓋率和形貌控制。本研究利用以溶液法合成的二硫化鐵奈米晶體(FeS2 nanocrystals, NCs)做為添加劑,將配好的FeS2 NCs混合液加入5 vol% 於鈣鈦礦前驅溶液中,來改善成膜狀態,能量轉換效率到達15.95 %,相較於原本單純CH3NH3PbI3-xClx的元件效率提升了約28%。我們對此種新的鈣鈦礦進行了各種研究分析,包含X光繞射光譜(XRD)、可見光吸收光譜(Visible Absorption Spectroscopy)、外部量子效率(EQE) 、時間解析光激螢光(TRPL)和掃描式電子顯微鏡(SEM)。結果顯示此二硫化鐵奈米晶體添加劑可提升鈣鈦礦薄膜的結晶性,使之更有連結性及方向性,提升了元件的開路電壓(VOC)及填充因子(FF),進而增進了鈣鈦礦太陽能電池的能量轉換效率。
Perovskite solar cells have been developed rapidly in recent years. Solution processable planar heterojunction perovskite solar cells are seen as a promising low-cost renewable energy technology. The most common device structure is FTO / TiO2 / CH3NH3PbI3-xClx / spiro-OMeTAD / Au. The main difficulties for this type of solar cells are the controls of coverage and morphology of perovskite CH3NH3PbI3-xClx film. In this study, a solution processable pyrite iron(II) sulfide nanocrystals (FeS2 NCs) act as additives. The FeS2 NCs mixed solution is added 5 vol% into the perovskite precursor solution to improve the film formation, the energy conversion efficiency reach 15.95%. Compared with the pristine CH3NH3PbI3-xClx device it has enhanced about 28%. We studied the new perovskite by various analyses, including XRD, Visible Absorption Spectroscopy, EQE, TRPL and SEM. The results showed that this iron(II) disulfide nanocrystals additive can improve the crystallinity of the perovskite film, making it more connective and directional. Therefore, the increased VOC and FF further enhanced the energy conversion efficiency of perovskite solar cells.
1. Laboratory, N. R. E., 2015.
2. German Advisory Council on Global Change 2003.
3. Krzysztof Biernat, A. M. a. M. G., 2013.
4. Richard Perez , M. P., IEA/SHC Solar Update 2009.
5. Thomas R. Karl, J. M. M., and Thomas C. Peterson,. (eds.), Global Climate Change Impacts in the United States 2009.
6. GmbH, L.-B.-S., Fossil and Nuclear Fuels – the Supply Outlook 2013.
7. IPCC, 2013.
8. Mitzi, D. B., Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials. In Progress in Inorganic Chemistry, John Wiley & Sons, Inc.: 2007; pp 1-121.
9. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Science 1999, 286 (5441), 945-947.
10. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
11. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., Nanoscale 2011, 3 (10), 4088-4093.
12. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Scientific Reports 2012, 2, 591.
13. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Science 2012, 338 (6107), 643-647.
14. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; NazeeruddinMd, K.; Gratzel, M.; Seok, S. I., Nat Photon 2013, 7 (6), 486-491.
15. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Nature 2013, 499 (7458), 316-319.
16. Liu, M.; Johnston, M. B.; Snaith, H. J., Nature 2013, advance online publication.
17. Liang, P.-W.; Liao, C.-Y.; Chueh, C.-C.; Zuo, F.; Williams, S. T.; Xin, X.-K.; Lin, J.; Jen, A. K. Y., Advanced Materials 2014, 26 (22), 3748-3754.
18. Chueh, C.-C.; Liao, C.-Y.; Zuo, F.; Williams, S. T.; Liang, P.-W.; Jen, A. K. Y., Journal of Materials Chemistry A 2015, 3 (17), 9058-9062.
19. Sun, C.; Xue, Q.; Hu, Z.; Chen, Z.; Huang, F.; Yip, H.-L.; Cao, Y., Small 2015, n/a-n/a.
20. Song, X.; Wang, W.; Sun, P.; Ma, W.; Chen, Z.-K., Applied Physics Letters 2015, 106 (3), 033901.
21. Chen, C.-C.; Bae, S.-H.; Chang, W.-H.; Hong, Z.; Li, G.; Chen, Q.; Zhou, H.; Yang, Y., Materials Horizons 2015, 2 (2), 203-211.
22. Chang, C.-Y.; Chu, C.-Y.; Huang, Y.-C.; Huang, C.-W.; Chang, S.-Y.; Chen, C.-A.; Chao, C.-Y.; Su, W.-F., ACS Applied Materials & Interfaces 2015, 7 (8), 4955-4961.
23. Hsu, H.-L.; Chang, C.-C.; Chen, C.-P.; Jiang, B.-H.; Jeng, R.-J.; Cheng, C.-H., Journal of Materials Chemistry A 2015, 3 (17), 9271-9277.
24. Kubo, R., Journal of the Physical Society of Japan 1962, 17 (6), 975-986.
25. Standardization, I. O. f., ISO/TS 800004-1 Nanotechnologies—Vocabulary—Part 1: Core terms 2011.
26. Ennaoui, A.; Fiechter, S.; Jaegermann, W.; Tributsch, H., Journal of The Electrochemical Society 1986, 133 (1), 97-106.
27. Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A., Solid State Communications 1996, 98 (6), 581-585.
28. Ennaoui, A.; Tributsch, H., Solar Energy Materials 1986, 14 (6), 461-474.
29. Alharbi, F.; Bass, J. D.; Salhi, A.; Alyamani, A.; Kim, H.-C.; Miller, R. D., Renewable Energy 2011, 36 (10), 2753-2758.
30. Hu, J.; Zhang, Y.; Law, M.; Wu, R., Journal of the American Chemical Society 2012, 134 (32), 13216-13219.
31. Ning, Z.; Dong, H.; Zhang, Q.; Voznyy, O.; Sargent, E. H., ACS Nano 2014, 8 (10), 10321-10327.
32. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T., Journal of the American Chemical Society 2003, 125 (36), 11100-11105.
33. Yu, W. W. a. P., X., Angewandte Chemie International Edition 2002, 41 (13), 2368-2371.