簡易檢索 / 詳目顯示

研究生: 黃承德
論文名稱: 離子佈植與摻雜對氮化鎵和氧化鋅薄膜光譜性質之影響
Effects of ion implantation and doping on optical properties of GaN and ZnO thin films
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 160
中文關鍵詞: 氮化鎵氧化鋅佈植離子摻雜離子光譜性質
論文種類: 學術論文
相關次數: 點閱:127下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究離子佈植與摻雜對氮化鎵和氧化鋅薄膜光譜性質的影響。實驗樣品包含以分子束磊晶法在藍寶石基板成長厚度約2.7 μm的氮化鎵薄膜,並於其上佈植不同濃度稀土離子 (釤離子、銪離子、釓離子及鈥離子),另使用射頻磁控濺鍍,並通入不同氧和氮流量,成長膜厚約390 nm之氧化鋅薄膜。
    首先,我們量測樣品的拉曼散射光譜,氮化鎵薄膜顯示3個拉曼峰,其頻率位置為142 cm-1、566 cm-1及733 cm-1,分別為E2(low)、E2(high) 及A1(LO) 對稱性;氧化鋅薄膜顯示2個拉曼峰,其頻率位置為99 cm-1和438 cm-1,分別為E2(low) 和E2(high) 對稱性。此外,氮化鎵薄膜之截面拉曼散射光譜顯示5個拉曼峰,其頻率位置為142 cm-1、531 cm-1、558 cm-1、567 cm-1及740 cm-1,分別屬於E2(low)、A1(TO)、E1(TO)、E2(high) 與E1(LO)。由於晶格不匹配及熱膨脹係數的關係,隨著愈靠近基板,所有拉曼特徵峰皆有藍移的現象。
    我們發現不論正面或截面氮化鎵薄膜的拉曼散射光譜,隨著佈植離子濃度增加,氮化鎵薄膜新增289 cm-1、361 cm-1及661 cm-1拉曼峰,這些振動模與佈植離子造成氮化鎵薄膜的缺陷有關,但卻與佈植離子種類無關,且缺陷相關拉曼峰愈接近基板界面,其強度降低。另隨著通入氮流量的增加,我們發現氧化鋅薄膜新增275 cm-1、510 cm-1、586 cm-1、及645 cm-1拉曼峰,其為通入氮氣造成晶格間隙中有鋅、氧 (Zni、Oi) 存在,並與氧氮錯位 (ZnO),形成複合型缺陷 (Zni-Oi及Zni-Ni),這些缺陷在通入氧流量的氧化鋅薄膜並未被發現。
    其次,我們量測樣品的穿透光譜與橢圓偏振光譜,隨著佈植離子濃度增加及通入氮流量變大,吸收能譜的能帶尾巴愈加明顯,氮化鎵薄膜的折射率極値呈減緩趨勢。佈植離子氮化鎵薄膜與通入氮流量氧化鋅薄膜的直接能隙值都比未佈植或未摻雜還小 (約為3.38 eV及3.26 eV),我們認為此乃能隙間的雜質帶或晶格結構扭曲所致。
    最後,隨著佈植稀土離子濃度的增加,氮化鎵薄膜的鐵磁性變明顯,稀土離子除了本身的未配位電子提供磁矩外,薄膜缺陷 (如:鎵空缺或氮空缺) 亦可能提供磁矩,我們發現在佈植稀土離子後,薄膜的鐵磁性與缺陷都增加,這暗指薄膜的有效磁矩與缺陷有緊密關聯性。

    致謝 …………………………………………………………… i 中文摘要 ……………………………………………………… ii 英文摘要 ……………………………………………………… iv 目錄 …………………………………………………………… vi 圖目錄 ………………………………………………………… viii 表目錄 ………………………………………………………… xxii 第一章 緒論 …………………………………………………… 1 第二章 研究背景 ……………………………………………… 4 2-1 氮化鎵與氧化鋅薄膜之磁性性質 ………………… 4 2-2氮化鎵薄膜之光譜性質……………………………… 8 2-3氧化鋅薄膜之光譜性質……………………………… 12 第三章 實驗儀器設備及其基本原理 ………………………… 31 3-1光譜儀系統 …………………………………………… 31 3-2光譜分析原理 ………………………………………… 35 第四章 實驗樣品特性 ………………………………………… 49 4-1 樣品製程 …………………………………………… 49 4-2 磁性性質 …………………………………………… 52 第五章 實驗結果與討論 ……………………………………… 67 5-1離子佈植氮化鎵薄膜的光譜性質研究 ……………… 67 5-2摻雜離子氧化鋅薄膜的光譜性質研究………………… 78 5-3 總結 …………………………………………………… 83 第六章 結論與未來展望 ……………………………………… 153 參考文獻 ……………………………………………………… 155

    [1]R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, and A. Stephen, “Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application”, Mater. Charact. 67, 10 (2012).
    [2]M. Droth and G. Burkard, “Electron spin relaxation in graphene nanoribbon quantum dots”, Phys. Rev. B 87, 205432 (2013).
    [3]A. X. Gray, J. Minár, S. Ueda, P. R. Stone, Y. Yamashita, J. Fujii, J. Braun, L. Plucinski, C. M. Schneider, G. Panaccione, H. Ebert, O. D. Dubon, K. Kobayashi, and C. S. Fadley, “Bulk electronic structure of the dilute magnetic semiconductor Ga1-xMnxAs through hard X-ray angle-resolved photoemission”, Nature Materials 11, 957-962 (2012).
    [4]J. Ning, G. Xiao, C. Wang, B. Liu, G. Zou, and B. Zou, “Synthesis of doped zinc blende-phase InSe:M (M = Fe and Co) nanocrystals for diluted magnetic semiconductor nanomaterials”, Cryst. Eng. Comm. 15, 3734-3738 (2013).
    [5]http://www.nims.go.jp/apfim/GMR.html
    [6]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors”, Science 287, 1019 (2000).
    [7]Y. Q. Wang and A. J. Steckl, “Three-color integration on rare-earth-doped GaN electroluminescent thin films”, Appl. Phys. Lett. 82, 503 (2003).
    [8]F. Y. Lo, A. Melnikov, D. Reuter, and A. D. Wieck, “Magnetic and structural properties of Gd-implanted zinc-blende GaN”, Appl. Phys. Lett. 90, 262505 (2007).
    [9]Y. Gohda and A. Oshiyama, “Intrinsic ferromagnetism due to cation vacancies in Gd-doped GaN: First-principles calculations”, Phys. Rev. B 78, 161201(R) (2008).
    [10]S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog, “Colossal Magnetic Moment of Gd in GaN”, Phys. Rev. Lett. 94, 307205 (2005).
    [11]F. Y. Lo, J. Y. Guo, V. Ney, A. Ney, M. Y. Chern, A. Melnikov, S. Pezzagna, D. Reuter, A. D. Wieck, and J. Massies, “Structural, optical, and magnetic properties of Ho-implanted GaN thin films”, J. Phys.: Conf. Ser. 266, 012097 (2011).
    [12]A. Majid, J. Iqbal, and A. Ali, “Structural, Optical and Magnetic Properties of Ce–GaN Based Diluted Magnetic Semiconductor”, J. Supercond. Nov. Magn. 24, 585 (2011).
    [13]K. Jindal, M. Tomar, R. S. Katiyar, and V. Guptal, “Structural and magnetic properties of N doped ZnO thin films”, J. Appl. Phys. 111, 102805 (2012).
    [14]C. F. Yu, T. J. Lin, S. J. Sun, and H. Chou, “Origin of ferromagnetism in nitrogen embedded ZnO:N thin films”, J. Phys. D: Appl. Phys. 40 6497–6500 (2007).
    [15]M. Katsikini, K. Papagelisa, E. C. Paloura, and S. Vesb, “Raman study of Mg, Si, O, and N implanted GaN”, J. Appl. Phys. 94, 4389 (2003).
    [16]V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, “Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC”, J. Appl. Phys. 82, 5097 (1997).
    [17]Y. H. Zhang, L. L. Guo, and W. Z. Shen, “Study on the Raman scattering measurements of Mn ion implanted GaN”, Mater. Sci. Eng., B 130, 269 (2006).
    [18]W. Gebicki, L. Adamowicz, J. Strzeszewski, S. Podsiadło, T. Szyszko, and G. Kamler, “Phonon anomalies near the magnetic phase transitions in BiFeO3 thin films with rhombohedral R3c symmetry”, Mater. Sci. Eng., B 82, 182 (2001).
    [19]J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett. 96, 503 (1996).
    [20]P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes”, Appl. Phys. A 64, 417 (1997).
    [21]L. Artús, R. Cuscó, E. Alarcón-Lladó, G. González-Díaz, I. Mártil, J. Jiménez, B. Wang, M. Callahan, “Isotopic study of the nitrogen-related modes in N+-implanted ZnO”, Appl. Phys. Lett. 90, 181911 (2007).
    [22]M. D. McCluskey, “Local vibrational modes of impurities in semiconductors”, J. Appl. Phys. 87, 3593 (2000).
    [23]F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO”, Appl. Phys. Lett. 95, 141903 (2009).
    [24]鄧勃、宁永成、劉密新著,儀器分析,清華大學出版社,民國八十年五月,第一版。
    [25]卓文中,NaxCoO2 (x = 0.68 and 0.75) 薄膜劣質化效應之光譜性質研究,國立臺灣師範大學物理研究所碩士論文,98年6月。
    [26]O. B. Romanova, L. I. Ryabinkina, V. V. Sokolov, A. Yu. Pichugin, D. A. Velikanov, D. A. Balaev, A. I. Galyas, O. F. Demidenko, G. I. Makovetskii, and K. I. Yanushkevich, “Magnetic properties and the metal-insulator transition in GdxMn1-xS solid solutions”, Solid State Commun. 150, 602 (2010).
    [27]H. Kuzmany, “Solid-State Spectroscopy”, Springer-Verlag Berlin Heidelberg (1998).
    [28]http://www.webelements.com
    [29]Z. Wei, C. Yan, Z. Jun, and C. X. Rong, “Structural, thermodynamic and electronic properties of zinc-blende AIN from first-principles calculations”, Chin. Phys. Soc. 18, 1207 (2009).
    [30]S. Li and C. Ouyang, “First principles study of wurtzite and zinc blende GaN: a comparison of the electronic and optical properties”, Phys. Lett. A 336, 145 (2005).
    [31]C. A. Arguello, D. L. Rqusseau, and S. P. S. Pqrto, “First-order Raman effect in wurtzite-type crystals”, Phys. Rev. 181, 1351 (1969).
    [32]M. Cardona and G. Güntherodt, “Light Scattering in Solids II (Basic Concepts and Instrumentation)”, Top. Appl. Phys. 50, 19-178 (1982).
    [33]G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu1, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces”, J. Appl. Phys. 110, 013527 (2011).
    [34]M. D. McCluskey and E. E. Haller, “Local vibrational modes in GaAs under hydrostatic pressure”, Phys. Rev. B 56, 6404–6407 (1997).
    [35]A. Hoffmann, A. Kaschner, and C. Thomsen, “Local vibrational modes and compensation effects in Mg-doped GaN”, Phys. Stat. Sol. (c) 0, 1783-1794 (2003).
    [36]H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors”, J. Phys.: Condens. Matter. 16 S5653 (2004).
    [37]M. D. McCluskeya, “Local vibrational modes of impurities in semiconductors”, J. Appl. Phys. 87, 3593 (2000).
    [38]W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, and B. Rauschenbach, “Raman scattering in ion-implanted GaN”, Appl. Phys. Lett. 72, 2589 (1998).
    [39]H. T. Wang, L. S. Tan, and E. F. Chor, “Optical and electrical characterization of annealed silicon-implanted GaN”, Semicond. Sci. Technol. 19, 142-146 (2004).
    [40]M. Katsikini, K. Papagelisa, E. C. Paloura, and S. Ves, “Raman study of Mg, Si, O, and N implanted GaN”, J. Appl. Phys. 94, 4389 (2003).
    [41]A. Mackova, P. Malinsky´, Z. Sofer, P. Šimek , D. Sedmidubsky´, M. Mikulics, and R. A. Wilhelm, “A study of the structural properties of GaN implanted by various rare-earth ions”, Nucl. Instrum. Methods Phys. Res., Sect. B 307, 446-457 (2013).
    [42]W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiadlo, “Raman scattering study of Ga1−xMnxN crystals”, Appl. Phys. Lett. 76, 3870 (2000).
    [43]M. H. Kane, S. Gupta, W. E. Fenwick, N. Li, E. H. Park, M. Strassburg, and I. T. Ferguson, “Comparative study of Mn and Fe incorporation into GaN by metalorganic chemical vapor deposition”, Phys. Stat. Sol. (a) 204, 61-71 (2007).
    [44]H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, “Zone-boundary phonons in hexagonal and cubic GaN”, Phys. Rev. B 55, 7000 (1997).
    [45]S. Curiotto and D. Chatain, “Surface morphology and composition of c-, a- and m-sapphire surfaces in O2 and H2 environments”, Surf. Sci. 603, 2088 (2009).
    [46]R. G. Powell, N. E. Lee, Y. W. Kim, and J. E. Greene, “Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactlve-ion molecular-beam epitaxy: Growth kinetics, microstructure, and properties”, J. Appl. Phys. 73, 189 (1993).
    [47]P. Perlin, C. J. Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure”, Phys. Rev. B 45, 83 (1992).
    [48]F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang and C. C. Yang, “Residual thermal strain in thick GaN epifilms revealed by cross-sectional Raman scattering and cathodoluminescence spectra”, Semicond. Sci. Technol. 22, 896-899 (2007).
    [49]Z. C. Feng, A. J. Mascarenhas, W. J. Choyke, and J. A. Powel, “Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si”, J. Appl. Phys. 64, 3176 (1988).
    [50]B. Pipeleers, S. M. Hogg, and A. Vantommeb, “Defect accumulation during channeled erbium implantation into GaN”, J. Appl. Phys. 98, 123504 (2005).
    [51]A. Shah and A. Mahmood, “Effect of Cr implantation on structural and optical properties of AlN thin films”, Phys. B 407, 3987 (2012).
    [52]R. S. Crandall, “Band-tail absorption in hydrogenated amorphous silicon”, Phys. Rev. Lett. 44, 749 (1980).
    [53]G. W. Shu, P. F. Wu, M. H. Lo, J. L. Shen, T. Y. Lin, H. J. Chang, Y. F. Chen, C. F. Shih, C. A. Chang, and N. C. Chen, “Concentration dependence of carrier localization in InN epilayers”, Appl. Phys. Lett. 89, 131913 (2006).
    [54]D. L. Wood, “Weak absorption tails in amorphous semiconductors”, Phys. Rev. B 5, 3144 (1972).
    [55]C. Bulutay, C. M. Turgut, and N. A. Zakhleniuk, “Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: Fullband approach”, Phys. Rev. B 81, 155206 (2010).
    [56]J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium”, Phys. Stat. Sol. (b) 15, 627-637 (1966).
    [57]M. Girtan and G. Folcher, “Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process”, Surf. Coat. Technol. 172, 242 (2003).
    [58]T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, “Optical properties of hexagonal GaN”, J. Appl. Phys. 82, 3528 (1997).
    [59]T. Hanada, “Basic properties of ZnO, GaN, and related materials”, Adv. Mater. Res. 12, 1-19 (2009).
    [60]K. Tsunoda, S. Adachi, and M. Takahashi, “Spectroscopic ellipsometry study of ion-implanted Si(100) wafers”, J. Appl. Phys. 91, 2936 (2002).
    [61]R. Goldhahn, S. Shokhovets, J. Scheiner, G. Gobsch, T. S. Cheng, C. T. Foxon, U. Kaiser, G. D. Kipshidze, and W. Richter, “Determination of group III nitride film properties by reflectance and spectroscopic ellipsometry studies”, Phys. Stat. Sol. (a) 177, 107 (2000).
    [62]S. Adachia, H. Mori, and M. Takahashi, “Model dielectric function analysis of ion implanted Si(100) wafers”, J. Appl. Phys. 93, 115 (2003).
    [63]G. J. Exarhos and S. K. Sharma, “Influence of processing variables on the structure and properties of ZnO films”, Thin Solid Films 270, 27-32 (1995).
    [64]X. B. Li, S. Y. Ma, F. M. Li, F. C. Yang, J. Liu, X. L. Zhang, Q. Zhao, X. H. Yang, C. Y. Wang, J. Zhu, C. T. Zhu, and X. Wang, “Blue-green and red luminescence from non-polar ZnO:Pb films”, Appl. Surf. Sci. 207, 4617 (2013).
    [65]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98, 041301 (2005).
    [66]V. Srikant and D. R. Clarke, “Optical absorption edge of ZnO thin films: The effect of substrate”, J. Appl. Phys. 81, 6357 (1997).
    [67]E. Fazio, S. Patanè, S. Scibilia, A. M. Mezzasalma, G. Mondio, F. Neri, and S. Trusso, “Structural and optical properties of pulsed laser deposited ZnO thin flms”, Curr. Appl. Phys. 13, 710-716 (2013).

    下載圖示
    QR CODE