研究生: |
蕭智謙 Siao, Jhih-Cian |
---|---|
論文名稱: |
釕聯吡啶錯合物進行光催化反應:碘離子氧化及苯醌還原反應 Photocatalyzed oxidation of iodide and Reduction of Benzoquinone Using Ruthenium Trisbipyridine |
指導教授: |
張一知
Chang, I-Jy |
口試委員: |
張一知
Chang, I-Jy 葉伊純 Yeh, Yi-Cheun 洪偉修 Hung, Wei-Hsiu |
口試日期: | 2024/07/11 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 碘離子氧化 、光催化 、釕金屬錯合物 、苯醌 |
英文關鍵詞: | oxidation of iodide, photocatalysis, ruthenium complex |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401061 |
論文種類: | 學術論文 |
相關次數: | 點閱:72 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中釕錯合物經過照光激發後,與氧化淬熄劑 1,4-benzoquinone分別在水溶液、KNO3、pH 4 以及 pH 4 / KNO3 溶液中進行雙分子淬熄反應,得到對苯二酚。中間產物 Ru(bpy)33+再氧化I‾ 得到 I3‾。
由於光化學產物 hydroquinone 和 triiodide 在水相中會互相反應而無法獲得最終產物,因此利用異相反應,將氧化淬熄劑 1,4-benzoquinone萃取在醋酸丁酯中,而釕錯合物和碘離子溶於水相中來進行反應。
釕錯合物和氧化淬熄劑 1,4-benzoquinone 透過液面之間碰撞進行雙分子的淬熄反應,經由 Stern-Volmer equation 得知淬熄速率常數 kq 為7.43 x 108 M-1 s-1,淬熄後得到三價釕錯合物再與碘離子進行反應。
最後得到的光化學產物 hydroquinone 和 triiodide,因hydroquinone 溶於有機相中且 triiodide 溶於水相中,能夠將兩種不同的產物分開,並利用電子吸收光譜鑑定其生成且計算出濃度。
光化學反應是利用光能來驅動化學反應,而得到產物,並可以借以儲存部分光能。但也因為能量非常高,氧化和還原產物均為高活性之物質,所以一般光化學反應均針對氧化端或還原端之產物,單獨進行實驗設計。本研究首次將光化學反應用兩相的方式,將氧化產物及還原產物分別溶於不同溶劑中,以得到最大光轉換效率。
In this research, the bimolecular quenching reaction of ruthenium complexes with the oxidative quencher 1,4-benzoquinone in aqueous, KNO3, pH 4, and pH 4 / KNO3 solutions after excitation to produce hydroquinone. The intermediate product, Ru(bpy)33+, then oxidizes I‾ to form I3‾.
Due to the mutual reaction of the photochemical products hydroquinone and triiodide in the aqueous phase, which prevents obtaining the final products, a heterogeneous reaction was employed. The oxidative quencher 1,4-benzoquinone was extracted into butyl acetate, while the ruthenium complexes and iodide were dissolved in the aqueous for the reaction.
The bimolecular quenching reaction between the ruthenium complexes and the oxidative quencher 1,4-benzoquinone occurred via collisions at the liquid interface. Using the Stern-Volmer equation, the quenching rate constant was determined to be 7.43 x 108 M-1s-1. After quenching, the trivalent ruthenium complex reacted with iodide.
The final photochemical products were hydroquinone and triiodide, with hydroquinone dissolving in the organic phase and triiodide in the aqueous phase, allowing the separation of the two different products. The products were identified and their concentrations determined using electronic absorption spectroscopy.
Photochemical reactions use solar energy to drive chemical reactions, resulting in products that can store part of solar energy. However, because of the high energy involved, both the oxidative and reductive products are highly reactive substances. Generally, photochemical reactions are designed to focus on either the oxidative or reductive products separately. This research is the first to use the heterogeneous reaction approach for photochemical reactions, dissolving the oxidative and reductive products in different solvents to achieve maximum solar conversion efficiency.
1. Martín-Yerga,D.,Pérez-Junquera,A.,Hernández-Santos,D.& Fanjul-Bolado,P.Time-resolved luminescence spectroelectrochemistry at screen-printed electrodes:Following the redox-dependent fluorescence of [Ru(bpy)3] 2+.Analytical chemistry,2017,89,10649-10654.
2. Tsai,K.Y.-D. & Chang,I.-J.Oxidation of bromide to bromine by ruthenium (II) bipyridine-type complexes using the flash-quench technique.Inorganic Chemistry,2017,56,8497-8503.
3. Dabestani,R. et al.Photoinduced oxidation of bromide to bromine on irradiated platinized TiO2 powders and platinized TiO2 particles supported in Nafion films.Journal of physical chemistry (1952),1986,90,2729-2732.
4. 陳峙朋。釕聯吡啶錯合物在水中催化碘離子的反應(碩士論文)。臺灣臺北師範大學化學系。2020。
5. Tsai,K.Y.-D. & Chang,I.-J.Photocatalytic oxidation of bromide to bromine. Inorganic Chemistry,2017,56,693-696.
6. Cook,A. R.,Curtiss,L.A. & Miller,J.R.Fluorescence of the 1, 4-benzoquinone radical anion.Journal of the American Chemical Society,1997,119,5729-5734.
7. Soltau,S.R.et al.Aqueous light driven hydrogen production by a Ru–ferredoxin–Co biohybrid. Chemical Communications,2015,51,10628-10631.
8. Argazzi,R.,Bignozzi,C.A.,Hasselmann,G.M. & Meyer,G.J.Efficient light-to-electrical energy conversion with dithiocarbamate−ruthenium polypyridyl sensitizers. Inorganic Chemistry,1998,37,4533-4537.
9. Farnum,B.H.,Ward,W.M. & Meyer,G.J.Flash-quench studies on the one-electron reduction of triiodide.Inorganic chemistry,2013,52,840-847.
10. Troian-Gautier,L.,Swords,W.B. & Meyer,G.J.Iodide photoredox and bond formation chemistry.Accounts of Chemical Research,2018,52,170-179.
11. Wang,H.,Wang,Z.,Li,L. & Chen,Y.Ternary and quaternary liquid–liquid equilibria for systems of methyl butyl ketone+water+ hydroquinone+phenol at 313.2 K and atmospheric pressure.Journal of Chemical & Engineering Data,2016,61,1540-1546.
12. Wilke,T.,Schneider,M. & Kleinermanns,K.1,4-Hydroquinone is a hydrogen reservoir for fuel cells and recyclable via photocatalytic water splitting.Open Journal of Physical Chemistry,2013,3,97-102.
13. Vanysek,P.Electrochemical series.CRC handbook of chemistry and physics,2000,8,8-33.
14. Darwent,J.R. & Kalyanasundaram,K.Electron-transfer reactions of quinones, hydroquinones and methyl viologen, photosensitized by tris (2,2-bipyridine)-ruthenium (II).Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics,1981,77,373-382.
15. Deetz,A.M. & Meyer,G.J.Resolving Halide Ion Stabilization through Kinetically Competitive Electron Transfers.JACS Au,2022,2,985-995.
16. Deetz,A. M.,Troian-Gautier,L., Wehlin,S.A.,Piechota, E. J. & Meyer,G.J.On the determination of halogen atom reduction potentials with photoredox catalysts.The Journal of Physical Chemistry A,2021,125,9355-9367.
17. Huynh,M.T.,Anson,C.W.,Cavell,A.C.,Stahl,S.S. & Hammes-Schiffer,S.Quinone 1 e– and 2 e– / 2 H+ reduction potentials:Identification and analysis of deviations from systematic scaling relationships.Journal of the American Chemical Society,2016,138,15903-15910.
18. Kumamoto,K.et al.Visible Light-driven photoenergy storage and photocatalysis using polyoxometallates coupled with a Ru complex.The Journal of Physical Chemistry C,2017,121,13515-13523.
19. Li,G.,Brady,M. D. & Meyer,G.J.Visible light driven bromide oxidation and ligand substitution photochemistry of a Ru diimine complex.Journal of the American Chemical Society,2018,140,5447-5456.
20. Li, G., Swords, W. B. & Meyer, G. J. Bromide Photo-oxidation Sensitized to Visible Light in Consecutive Ion Pairs. Journal of the American Chemical Society,2017,139,14983-14991.
21. Mengyu,Z.et al.Photochemical reactions between 1,4-benzoquinone and O2•−.Environmental Science and Pollution Research International,2020,27,31289-31299.
22. Rowley,J.G.,Farnum,B.H.,Ardo,S. & Meyer,G.J.Iodide chemistry in dye-sensitized solar cells:making and breaking I−I bonds for solar energy conversion.The Journal of Physical Chemistry Letters,2010,1,3132-3140.
23. Aydogan,A.et al.Accessing photoredox transformations with an Iron (III) photosensitizer and green light.Journal of the American Chemical Society,2021,143,15661-15673.
24. Barone,V.et al.Unraveling the interplay of different contributions to the stability of the quinhydrone dimer.RSC Advances,2013,4,876-885.
25. Troian-Gautier,L.et al.Halide photoredox chemistry.Chemical reviews,2019,119,4628-4683.
26. Atkins,P.,De Paula,J. & Friedman,R.Quanta, matter, and change:a molecular approach to physical chemistry.Oxford University Press,USA,2009.