簡易檢索 / 詳目顯示

研究生: 羅雅文
Lo, Ya-Wen
論文名稱: 探討數學專家教師設計兼具建模活動與閱讀任務的彈性選修課程之歷程
指導教授: 楊凱琳
Yang, Kai-Lin
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 123
中文關鍵詞: 檔案化數學建模閱讀任務科技融入教學教師作為設計者專業發展
英文關鍵詞: documentation, mathematics modeling, reading task, technology-instruction integration, teacher as designer, professional development
DOI URL: http://doi.org/10.6345/NTNU202000894
論文種類: 學術論文
相關次數: 點閱:172下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過探索兩名數學專家教師設計兼具數學建模與閱讀任務的彈性選修課程之歷程,分析教師檔案化的過程中如何選擇資源,並將評估資源的考量因素作為內容分析的資料,以五個面向編碼-注意學生、課程目標、價值信念、內容知識、教學內容知識,再歸納教師設計時面臨的挑戰與因應的克服策略。
    此研究分析教師檔案化的過程中發現:不論是在設計出發點、教學前調整、教學後反思的階段,兩位個案教師將資源檔案化時,評估資源的主要考量因素皆為學生和教學內容知識。此外,除了初始的五個編碼面向,研究結果新增兩個面向-學校資源、教師精進能力的意圖。從兩位個案教師設計時面臨的挑戰與因應的克服策略發現,教師雖然不擅長數學建模、閱讀任務、科技融入教學,但是教師主動向他人尋求資源-教授、研究生、同事。在教學實踐後,透過學生正向地學習成就與態度,教師更信服調整後的教學策略是有效的。其中一位個案教師為了科技融入教學,嘗試了完全沒使用過的科技,並從自身為學習者的角度判斷任務的適切性。
    本研究的貢獻分為三個面向:在教師檔案化的理論應用上,在教師檔案化的使用基模中進一步探討引發教師精進能力意圖;在教師設計創新活動的專業發展上,除了讓專家教師和生手教師彼此發揮長處、教學相長,更提供機會讓專家教師同時是教學活動的學習者,並藉以反思與評析教學活動的適切性;在教師專業發展的活動設計上,除了在教師設計教案時引導教師預想學生的學習路徑,藉此刺激教師調整教學模組外,在教學實踐後需要引導教師討論與反思學生的成果是否符合建模原則和課程目標,能夠促進教師調整教學活動與教學方式。

    致謝 i 中文摘要 ii 目次 iii 表次 iv 圖次 v 第一章、緒論 1 第一節、研究背景 1 第二節、研究目的 3 第三節、研究問題 4 第四節、名詞界定 4 第二章、文獻探討 5 第一節、課程設計的理論、框架和工具 5 第二節、教師作為設計者 19 第三節、檔案化 22 第三章、研究方法 24 第一節、研究流程 24 第二節、研究方法 25 第三節、資料分析 29 第四章、研究結果 34 第一節、專家教師的設計歷程 34 第二節、專家教師在設計過程中面臨的挑戰和克服方式 63 第五章、結論與建議 72 第一節、 討論與結論 72 第二節、建議 75 參考文獻 77 附件一、專家教師各個版本的教學活動調整細節 83 附件二、內容分析的編碼結果 93 附件三、教師的反思檢核表 108

    王郁雯. (2017). 國小教師專業認同型塑之後現代觀點探究. 國立臺北教育大學課程與教學研究所學位論文, 1-156.
    刘晓云. (2017). 关键在问, 问出精彩——焦点讨论法在课堂教学中的应用与思考. 新课程评论(3), 38-45.
    范信賢. (2001). 後現代思潮下對 [教材] 概念的省思. In: 國教學報.
    教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北市: 教育部.
    Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 786-795.
    Adams, T. L., & Lowery, R. M. (2007). An analysis of children's strategies for reading mathematics. Reading & Writing Quarterly, 23(2), 161-177.
    Aiken Jr, L. R. (1972). Language factors in learning mathematics. Review of Educational Research, 42(3), 359-385.
    Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries.
    Barrows, H. S., & Kelson, A. (1995). Problem-based learning in secondary education and the problem-based learning institute. Springfield, IL: Problem-Based Learning Institute, 1(1), 1-5.
    Barton, M. L., Heidema, C., & Jordan, D. (2002). Teaching reading in mathematics and science. Educational leadership, 60(3), 24-29.
    Berelson, B. (1952). Content analysis in communication research.
    Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education – Discussion document. Educational Studies in Mathematics, 51(1), 149-171. Retrieved from https://doi.org/10.1023/A:1022435827400. doi:10.1023/A:1022435827400
    Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of mathematical modelling and application, 1(1), 45-58.
    Bogdan, R., & Biklen, S. K. (1997). Qualitative research for education: Allyn & Bacon Boston, MA.
    Borasi, R., & Siegel, M. (1990). Reading to learn mathematics: New connections, new questions, new challenges. For the learning of mathematics, 10(3), 9-16.
    Borasi, R., & Siegel, M. (2000). Reading Counts: Expanding the Role of Reading in Mathematics Classrooms: ERIC.
    Borasi, R., Siegel, M., Fonzi, J., & Smith, C. F. (1998). Using transactional reading strategies to support sense-making and discussion in mathematics classrooms: An exploratory study. Journal for Research in Mathematics Education, 275-305.
    Boschman, F., McKenney, S., & Voogt, J. (2014). Understanding decision making in teachers’ curriculum design approaches. Educational technology research and development, 62(4), 393-416.
    Bossé, M. J., & Faulconer, J. (2008). Learning and assessing mathematics through reading and writing. School Science and Mathematics, 108(1), 8-19.
    Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research–A systematic review of recent trends. Computers & Education, 114, 255-273.
    Brown, M., & Edelson, D. (2003). Teaching as design: Can we better understand the ways in which teachers use materials so we can better design materials to support their changes in practice. Evanston, IL: The Center for Learning Technologies in Urban Schools.
    Brown, M. W. (2011). The teacher–tool relationship: Theorizing the design and use of curriculum materials. In Mathematics teachers at work (pp. 37-56): Routledge.
    Brunner 1, R. B. (1976). Reading mathematical exposition. Educational research, 18(3), 208-213.
    Da Ponte, J. P., Zaslavsky, O., Silver, E., de Carvalho Borba, M., Van den Heuvel-Panhuizen, M., Gal, H., . . . Palis, G. d. L. R. (2009). Tools and settings supporting mathematics teachers’ learning in and from practice. In The professional education and development of teachers of mathematics (pp. 185-209): Springer.
    Davis, E. A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning. Educational researcher, 34(3), 3-14.
    Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how students learn, 20(2010), 51-76.
    Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for Research in Mathematics Education, 110-136.
    English, L. D., Ärlebäck, J. B., & Mousoulides, N. (2016). Reflections on progress in mathematical modelling research. In The second handbook of research on the psychology of mathematics education (pp. 383-413): Brill Sense.
    Frey, C. B., & Osborne, M. (2013). The future of employment.
    Fuentes, P. (1998). Reading comprehension in mathematics. The Clearing House, 72(2), 81-88.
    Glesne, C. (2006). Becoming qualitative researchers: An introduction Boston. In: Pearson Education.
    Graham, C. R., Borup, J., & Smith, N. B. (2012). Using TPACK as a framework to understand teacher candidates' technology integration decisions. Journal of Computer Assisted Learning, 28(6), 530-546.
    Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical thinking and learning, 1(2), 155-177.
    Gueudet, G., Pepin, B., & Trouche, L. (2013). Collective work with resources: An essential dimension for teacher documentation. Zdm, 45(7), 1003-1016.
    Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218.
    Gueudet, G., & Trouche, L. (2010). Ressources vives. Le travail documentaire des professeurs en mathématiques. Lectures, Publications reçues.
    Gueudet, G., & Trouche, L. (2011). Teachers’ work with resources: Documentational geneses and professional geneses. In From text to'Lived'resources (pp. 23-41): Springer.
    Guthrie, J. T., & Alao, S. (1997). Designing contexts to increase motivations for reading. Educational psychologist, 32(2), 95-105.
    Harlaar, N., Dale, P. S., & Plomin, R. (2007). From learning to read to reading to learn: Substantial and stable genetic influence. Child Development, 78(1), 116-131.
    Hernández, M. L., Levy, R., Felton-Koestler, M. D., & Zbiek, R. M. (2017). Mathematical modeling in the high school curriculum. Mathematics Teacher, 110(5), 336-342.
    Hernandez-Martinez, P., & Harth, H. (2015). An activity theory analysis of group work in mathematical modelling. Proceedings of PME 39, 3, 57-64.
    Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational psychology review, 16(3), 235-266.
    Hogan, C. (2007). Facilitating multicultural groups: A practical guide: Kogan Page Publishers.
    Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9), 1277-1288.
    Jones, K., & Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal of Mathematics Teacher Education, 19(2-3), 105-121.
    Lagrange, J., & Artigue, M. (2009). Students’ activities about functions at upper secondary level: a grid for designing a digital environment and analysing uses. Paper presented at the Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education.
    Lesh, R., Cramer, K. A., Doerr, H., Post, T., & Zawojewski, J. (2003). Model development sequences: Models and modeling perspectives on mathematics pr. In Beyond Constructivism: Models and modeling perspectives on mathematics pr (pp. 35-58): Lawrence Erlbaum Associates.
    Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. R. (2000). Principles for developing thought-revealing activities for students and teachers. In Research design in mathematics and science education (pp. 591-646): Lawrence Erlbaum Associates, Inc.
    Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching: Routledge.
    Lin, F.-L., & Yang, K.-L. (2005). Distinctive characteristics of mathematical thinking in non-modelling friendly environment. Teaching Mathematics and its Applications, 24(2-3), 97-106.
    Mayring, P. (2004). Qualitative content analysis. A companion to qualitative research, 1, 159-176.
    Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers college record, 108(6), 1017-1054.
    Ng, C., & Bartlett, B. (2017). Improving reading and reading engagement in the 21st Century: Springer.
    Oliva, P. F., & Gordon II, W. R. (2012). Developing the curriculum: Pearson Higher Ed.
    Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic reader. Contemporary educational psychology, 8(3), 293-316.
    Pepin, B., Gueudet, G., & Trouche, L. (2013). Re-sourcing teachers’ work and interactions: A collective perspective on resources, their use and transformation. Zdm, 45(7), 929-943.
    Plucker, J., & Zabelina, D. (2009). Creativity and interdisciplinarity: One creativity or many creativities? Zdm, 41(1-2), 5-11.
    Psycharis, G., & Kalogeria, E. (2013). Studying trainee teacher educators’ documentational work in technology enhanced mathematics. Proceedings of PME 37, 4, 65-72.
    Rezat, S. (2006). A model of textbook use. Paper presented at the Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education.
    Rumelhart, D. E. (1976). Toward an interactive model of reading: Center for Human Information Processing, University of California San Diego ….
    Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational researcher, 38(5), 329-342.
    Savery, J. R. (2015). Overview of problem-based learning: Definitions and distinctions. Essential readings in problem-based learning: Exploring and extending the legacy of Howard S. Barrows, 9, 5-15.
    Savery, J. R., & Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational technology, 35(5), 31-38.
    Sherin, M. G., & Drake, C. (2004). Identifying patterns in teachers’ use of a reform-based elementary mathematics curriculum. Manuscript submitted for publication, 45-97.
    Sherin, M. G., & Drake, C. (2009). Curriculum strategy framework: investigating patterns in teachers’ use of a reform‐based elementary mathematics curriculum. Journal of Curriculum Studies, 41(4), 467-500.
    Siegel, M., & Fonzi, J. M. (1995). The practice of reading in an inquiry-oriented mathematics class. Reading Research Quarterly, 632-673.
    Son, H.-c., & Lew, H.-c. (2006). Discovering a rule and its mathematical justification in modeling activities using spreadsheet. Proceedings of PME 30, 5, 137-144.
    Stanfield, R. B. (2000). The art of focused conversation: 100 ways to access group wisdom in the workplace: New Society Publishers.
    Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American educational research journal, 33(2), 455-488.
    Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research (Vol. 8): Springer Science & Business Media.
    Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. Encyclopedia of mathematics education(s 521), 525.
    Visnovska, J., Cobb, P., & Dean, C. (2011). Mathematics teachers as instructional designers: What does it take? In From Text to'Lived'Resources (pp. 323-341): Springer.
    Wallace, F. H., & Clark, K. K. (2005). Reading stances in mathematics: Positioning students and texts. Action in Teacher Education, 27(2), 68-79.
    Wathall, J. T. (2016). Concept-based Mathematics: Teaching for deep understanding in secondary classrooms: Corwin Press.
    Westerman, D. A. (1991). Expert and novice teacher decision making. Journal of teacher education, 42(4), 292-305.
    Wittmann, E. C. (1995). Mathematics education as a ‘design science’. Educational Studies in Mathematics, 29(4), 355-374.
    Woodside, A. G., & Wilson, E. J. (2003). Case study research methods for theory building. Journal of Business & Industrial Marketing.
    Yin, R. (1994). Case study research: Qualitative methods. Thousand Oaks, CA.
    Yin, R. K. (2003). Case study research: design and methods (ed.). Thousand Oaks.
    Yu, S.-Y., & Chang, C.-K. (2011). What Did Taiwan Mathematics Teachers Think of Model-Eliciting Activities and Modelling Teaching? In Trends in teaching and learning of mathematical modelling (pp. 147-156): Springer.
    Zhang, Y., & Wildemuth, B. M. (2009). Qualitative analysis of content. Applications of social research methods to questions in information and library science, 308, 319.

    下載圖示
    QR CODE