研究生: |
巫旻龍 Wu, Min-Long |
---|---|
論文名稱: |
膨脹性石墨對鋁離子電池之電化學表現研究 The Study on Electrochemical Performance of Expanded Graphite for Rechargeable Aluminum-ion Batteries |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 鋁離子電池 、膨脹性石墨 、高電流密度 、臨場XRD 、臨場拉曼 |
英文關鍵詞: | Aluminum-ion battery, Expanded graphite, High current density, in-situ XRD, in-situ Raman |
DOI URL: | https://doi.org/10.6345/NTNU202202214 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁不僅是產量最高的金屬在大氣也不會有甚麼反應,屬於安全也較便於處理的金屬。在氧化還原過程中牽涉到三個電子的轉移,其密度(2.7 g*cm-3)遠大於鋰(0.53 g*cm-3),故其體積容量(8.06 Ah*mL-1)也是遠大於鋰(2.04 Ah*mL-1),表示在相同體積下的鋁可以提供的電量約有鋰提供的四倍多。
在我們團隊的前作中,研究出天然鱗片石墨適用於鋁離子電池中的陰極材料,具有高電量及穩定性的特點。本作中研究前驅物為鱗片石墨的膨脹性石墨,在高電流密度(1000 mA/g)時亦具有高電量與穩定性,比較充放電曲線圖與循環伏安圖的反應後發現和前作一樣。臨場XRD與臨場拉曼可以得知充放電過程中氯鋁酸根有嵌入嵌出石墨層。SEM圖分析了充放電前後材料的結構差異。
Aluminum is not only the most abundant metal on Earth, but also safe to deal with in comparison to other kind of metal-ion battery. It contains the transfer of three electrons in redox reaction of aluminum. Furthermore, the density of aluminum is around four times larger than the one of lithium, indicating that under the same volume, aluminum provides almost four times greater volumetric capacity than lithium.
In our previous study, we found that the aluminum-ion batteries with natural flake graphite as cathode material contains high capacity and high stability. In this work, we investigate the cathodic performance of expanded graphite with natural flake graphite as the precursor. We discovered that under a high current density of 1000 mA/g, the battery also contains high capacity and high stability.Moreover, the galvanostatic curves and the cyclic voltammogram of this work are the same as the previous one.From in-situ XRD and in-situ raman spectroscopy, it shows the intercalation/deintercalation of AlCl4- ions into/out of to expanded graphite. The SEM image also reveal the structural difference of expanded graphite between before and after charging-discharging.
1. Das, S.K., et al, J. Mater. Chem. A, 2017, 5(14), pp
6347-6367.
2. Hulot, M., Compt. Rend., 1855, 40, pp 148.
3. Elia, G.A., et al., Adv. Mater., 2016, 28(35),pp 7564-
79.
4. Holleck, G. L., et al., J. Electrochem. Soc., 1972. 119, pp 1161–1166.
5. Tu, X., et al., Roy. Soc. Ch., 2017, 7(24), pp 14790-
14796.
6. Grjotheim , K., et al., Acta. Chem. Scand., 1980, 34, pp 666–670.
7. Takami , N., et al., Electrochim. Acta., 1988, 33, pp
1137–1142.
8. Qingfeng, L., et al., J. Electrochem. Soc., 1989, 136,
pp 2940–2943.
9. Lin, M.C., et al., Nature, 2015. 520(7547), pp 325-8.
10. Hurley, F. H., U.S.Patent 446,331, August 3,1948.
11. Gale, R. J., et al., Inorg. Chem., 1979, 18, pp 1603.
12. Wasserscheid, P., et al., Angew. Chem., 2000, 39, pp
3772.
13. Wang, H., et al., J. Mater. Chem. A, 2015. 3(45): pp
22677-22686.
14. Reed, L. D., et al., J. Electrochem. Soc. 2013, 160, pp A915-A917.
15. Tuck, C.D.S., et al., J. Electrochem. Soc., 1987, 134,
pp 2970-2981.
16. Kliskić, M., et al, J. Appl. Electrochem., 1994, 24, pp 814.
17. Paranthaman, M. P., 218th ECS Meeting; 2010, Abstract
314.
18. Wang, W., et al., Sci. Rep., 2013, 3, pp 3383.
19. Jayaprakash, et al., Chem. Commun., 2011, 47(47), pp
12610-2.
20. Wang, H., et al., A.C.S. Appl. Mater. Inter., 2015,
7(1), pp 80-4.
21. Gu, S., et al., Energy Storage Mater., 2017, 6, pp 9-
17.
22. Chiku, M., et al., A.C.S. Appl. Mater. Inter., 2015,
7(44), pp 24385-9.
23. Suto, K., et al, 2016, 163(5), pp A742–A747.
24. Nakaya, K., et al, J. Electrochem. Soc., 2015, 162(1),
pp D42–D48.
25. Mori, T., et al., J. Power Sources, 2016, 313, pp 9-14.
26. Geng, L., et al., 2015, 27(14), pp 4926-4929.
27. Lee, B., et al, J. Electrochem. Soc., 2016, 163 (6), pp A1070-A1076
28. Rani, J.V.K., et al., J. Electrochem. Soc., 2013, 160,
pp A1781–A1784.
29. Wang, D.Y., et al., Nat. Commun., 2017, 8, pp 14283.
30. Chen, H., et al., Adv. Mater., 2017, 29(12), 1605958
31. 張國馨、Dmitry Belov、謝登存﹐工業材料雜誌, 2008, 260
84
32. Zhang, S.S., J. Power Sources, 2007, 164(1), pp 351-
364.
33. 謝育儒, 多種不同結構微米級石墨對鋁離子電池電化學表現之影響
研究, 碩士論文, 國立臺灣師範大學, 2016
34. 陳昱勛, 高結晶性天然鱗片石墨用於鋁離子電池之電化學分析及機
制研究, 碩士論文, 國立臺灣師範大學, 2016
34. 莫定山, 拉曼光譜原理及應用,
http://drr.lib.ksu.edu.tw/bitstream/987654321/3320/3/%E6%8
B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E4%B9%8B%E5%8E%9F%E7%%90%8
6%E8%88%87%E6%87%89%E7%94%A8.pdf.