簡易檢索 / 詳目顯示

研究生: 陳威宇
Chen, Wei-Yu
論文名稱: 印度北部喀什米爾地區潘加爾火成岩區中皮爾潘加爾區域的地質年代學與地球化學之研究
Geochronology and Geochemistry of the Panjal Traps from the southern Pir Panjal Range, Kashmir, India.
指導教授: 謝奈特
J.Gregory Shellnutt
口試委員: 謝奈特
J. G. Shellnutt
賴昱銘 彭君能
口試日期: 2021/07/13
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 55
中文關鍵詞: 印度喀什米爾大型洪流玄武岩二疊紀新特提斯洋
英文關鍵詞: India, Kashmir, continental flood basalt, Permian, Neo-Tethys
研究方法: 實驗設計法內容分析法
DOI URL: http://doi.org/10.6345/NTNU202101272
論文種類: 學術論文
相關次數: 點閱:111下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在喜馬拉雅山區的早二疊紀火山序列,與新特提斯洋及細長狀的辛梅里亞大陸形成於同一時間,潘加爾火成岩區(Panjal Traps)是西部喜馬拉雅山區中與新特提斯洋有關的最大玄武岩區,而針對潘加爾火成岩區中皮爾潘加爾區域(Pir Panjal Range)的研究非常的稀少。本研究使用高精度化學侵蝕同位素稀釋熱電離質譜儀(CA-ID-TIMS),針對玄武岩中分離出的鋯石進行鈾鉛定年,並對皮爾潘加爾南部的賈瓦哈爾隧道露頭(Jawahar Tunnel)的十個樣品進行全岩地化分析,以及採自潘加爾火成岩區不同露頭的樣品進行全岩錸鋨同位素分析。
    鋯石鈾鉛定年目標是賈瓦哈爾隧道露頭的玄武岩樣品-JT/9,定年結果為288.2±0.3百萬年,此一結果與前人利用雷射剝蝕感應耦合電漿質譜儀(LA-ICP-MS),對斯里納加爾附近的流紋岩中的鋯石定年的結果相近。
    主要元素的結果顯示賈瓦哈爾隧道露頭的岩性可被區分為三個部分:(1)玄武岩 (二氧化矽 < 52 wt.%、Mg# < 56;(2) 玄武岩質安山岩(二氧化矽 = 52~60 wt.%、Mg# = 32~48);(3) 酸性岩 (二氧化矽 = 64.0和70.1 wt.%、Mg# = 27和23),並且可能與潘加爾火成岩區東部的格里爾萊文露頭(Guryul Ravine)有關。球粒隕石標準化的稀土元素序列、以及原始地函標準化的不相容元素序列均顯示:無論是基性岩或酸性岩都與格里爾萊文露頭所採集的樣本相似。銪、鍶與鋇的虧損顯示出此地區的岩漿應該經歷過長石的結晶分異,而鎂質低可能代表基性矽酸鹽礦物的結晶分異 (例如: 橄欖石、斜輝石)。
    來自潘加爾火成岩區不同露頭的87Os/88Os介於0.1230與0.2832之間,兩個來自皮爾潘加爾區域北部的樣品87Os/88Os則為0.1230及0.1256,這兩個數值與前人提出的原始上部地函的87Os/88Os相似,然而來自其他區域如:(皮爾潘加爾區域南部的樣品)皆擁有不同程度富集的訊號 (0.1343~0.2832) 。
    來自賈瓦哈爾隧道露頭的新數據顯示皮爾潘加爾區域南部可能與格里爾萊文露頭相關,而非與皮爾潘加爾區域北部有關。新的錸鋨同位素與前人的釹同位素結果,均顯示出此區域最初可能是球粒隕石質地函,並且逐漸從代表較富集岩漿源的賈瓦哈爾隧道與格里爾萊文區域,轉變成相對虧損的皮爾潘加爾區域北部。這個結果與此區域從大陸張裂逐漸演化成海盆擴張的地質背景一致。

    The Early Permian volcanic sequences in the Himalaya are contemporaneous with the opening of the Neo-Tethys Ocean and the formation of the Cimmerian ribbon-continent. The Panjal Traps are the largest exposure of the Neo-Tethyan rift-related basalt in the Western Himalaya. Few, if any, investigations of the Panjal Traps are focused on the Pir Panjal Range. This study presents a high-precision chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) zircon U-Pb age from a basalt, new whole-rock geochemical data of rocks collected near the Jawahar Tunnel located at the southern region of Pir Panjal Range and whole-rock Os isotopic data of rocks collected across Panjal Traps.
    The CA-ID-TIMS zircon U-Pb age was obtained from a basalt yielded a weighted-mean 206Pb/238U age of 288.2 ± 0.3 Ma (N = 4, MSWD = 1.5). This age is within the error of the zircon LA-ICP-MS age (289 ± 3 Ma) from the rhyolite collected in the Guryul Ravine section located near Srinagar. The major elemental compositions indicate that the samples from Jawahar Tunnel can be roughly divided into three groups (basaltic: SiO2 < 52 wt.%; Mg# < 56, basaltic andesite: SiO2 = 52 wt.% to 60 wt.%; Mg# = 32 to 48, silicic: SiO2 = 64.0 and 70.1 wt.%; Mg# = 27, and 23) and may correlate with the Guryul Ravine section in the eastern portion of Panjal Traps. The chondrite normalized rare earth element and primitive mantle normalized incompatible element plots show that both mafic and silicic samples have patterns similar to the rocks collected from Guryul Ravine. The Eu/Eu* values (0.61 to 0.81) and the depletion of Sr and Ba in the primitive mantle normalized incompatible element plot imply the magma underwent fractional crystallization of plagioclase. The low Mg# indicates the parental magma also underwent fractional crystallization of mafic silicate minerals (i.e., olivine and/or clinopyroxenes. The 87Os/88Os ratios in different parts of Panjal Traps sections are range from 0.1230 to 0.2832. Two samples from northern Pir Panjal Range have ratios of 0.1230 and 0.1256 which are similar to primitive upper mantle whereas samples from other sections including southern Pir Panjal Range show enriched values (0.1343-0.2832).
    The new data from Jawahar Tunnel imply the southern Pir Panjal Range might be correlative to the Guryul Ravine section instead of the northern Pir Panjal Range. The Re-Os and Nd isotopes suggest the source of the initial Panjal Traps was likely chondritic and that it transitioned from enriched at Jawahar Tunnel and Guryul Ravine to relatively depleted in the northern Pir Panjal Range. The results are consistent with a transition from continental rifting setting to ocean basin opening.

    Acknowledgements i 摘要 ii Abstract iii Table of contents v List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Large Igneous Provinces 1 1.1.1 LIP classification and definition 1 1.1.2 Genesis of a LIP 2 1.1.3 Continental Flood Basalt (CFB) in the Late Paleozoic 3 1.2 Geological background 4 1.2.1 Geology of India 4 1.2.2 Tectonic evolution of the Tethyan margin 5 1.2.3 Panjal Traps 6 Chapter 2 Petrography 11 2.1 Introduction 11 2.2 Petrography of the silicic rocks 11 2.3 Petrography of the mafic rocks 12 Chapter 3 Methods 17 3.1 Sample preparation 17 3.2 Zircon U-Pb dating 17 3.3 Major elements analysis 18 3.4 Trace elements analysis 19 3.5 Re-Os isotope analysis 19 3.5.1 Extraction of the Os 20 3.5.1.1 Transfer Os from acid to Carbon tetrachloride 20 3.5.1.2 Transfer Os from Carbon Tetrachloride to Hydrogen Bromide 20 3.5.1.3 Microdistillation 20 3.5.2 Extraction of the Re 20 3.5.2.1 Pre-column preparation 20 3.5.2.2 Column separation 21 Chapter 4 Results 22 4.1 Geochronology 22 4.2 Major and trace elements 24 4.3 Re-Os isotopes 29 Chapter 5 Discussion 30 5.1 Geochronology of the Panjal Traps 30 5.2 Petrogenesis in the southern Pir Panjal Range 31 5.2.1 Evolution of the rocks in Pir Panjal Range 31 5.2.1.1 Origin of the silicic flows 32 5.2.1.2 Evolution of the mafic flows 35 5.2.2 Correlation between Jawahar Tunnel and other regions of the Panjal Traps 39 5.3 Tectonic evolution during the eruption of the Panjal Traps 43 5.3.1 Potential mantle source of Panjal Traps 43 5.3.2 Transition from within plate eruption to ocean basin opening 46 Chapter 6 Conclusion 50 References 51

    Anderson, D. L. (2001). Top-down tectonics? Science, 293(5537), 2016-2018. https://www.ncbi.nlm.nih.gov/pubmed/11557870
    Anderson, D. L. (2013). The persistent mantle plume myth. Australian Journal of Earth Sciences, 60(6-7), 657-673. https://doi.org/10.1080/08120099.2013.835283
    Anderson, D. L., & Natland, J. H. (2005). A brief history of the plume hypothesis and its competitors: Concept and controversy. In G. R. Foulger, J. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes and paradigms, Geological society of America Special Papers (Vol. 388, pp. 119-145): Geological Society of America. https://doi.org/10.1130/0-8137-2388-4.119
    Bachmann, O., & Bergantz, G. W. (2008). Rhyolites and their Source Mushes across Tectonic Settings. Journal of Petrology, 49(12), 2277-2285. https://doi.org/10.1093/petrology/egn068
    Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., & Schmitt, A. K. (2013). Zircon saturation re-revisited. Chemical Geology, 351, 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
    Bhat, M. I., & Zainuddin, S. M. (1978). Environment of eruption of the Panjal Traps. Himalayan Geology, 8, 727-738.
    Bhat, M. I., Zainuddin, S., & Rais, A. (1981). The Panjal Trap chemistry and the birth of Tethys. Geological Magazine, 118(4), 367-375. https://doi.org/10.1017/S0016756800032234
    Birck, J. L., Barman, M. R., & Capmas, F. (1997). Re-Os Isotopic Measurements at the Femtomole Level in Natural Samples. Geostandards Newsletter, 21(1), 19-27. https://doi.org/10.1111/j.1751-908X.1997.tb00528.x.
    Bond, D. P., & Wignall, P. B. (2014). Large igneous provinces and mass extinctions: an update. In G. Keller, & A. C. Kerr (Eds.) Volcanism, impacts, and mass extinctions: causes and effects, Geological society of America Special Papers (Vol. 505, pp. 29-55): Geological Society of America. https://doi.org/10.1130/2014.2505(02)
    Bonin, B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97, 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
    Bryan, S. E., & Ernst, R. E. (2008). Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86(1-4), 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
    Campbell, I. H., & Griffiths, R. W. (1990). Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2), 79-93. https://doi.org/10.1016/0012-821X(90)90072-6
    Chauvet, F., Lapierre, H., Bosch, D., Guillot, S., Mascle, G., Vannay, J.-C., et al. (2008). Geochemistry of the Panjal Traps basalts (NW Himalaya): records of the Pangea Permian break-up. Bulletin de la Société géologique de France, 179(4), 383-395. https://doi.org/10.2113/gssgfbull.179.4.383
    Coffin, M. F., & Eldholm, O. (1992). Volcanism and continental break-up: a global compilation of large igneous provinces. In B. C. Storey, T. Alabaster, & R. J. Pankhurst (Eds.) Magmatism and the Causes of Continental Break-up, Geological Society, London, Special Publications (Vol. 68, pp. 17-30): Geological Society of London. https://doi.org/10.1144/GSL.SP.1992.068.01.02
    Coffin, M. F., & Eldholm, O. (1994). Large igneous provinces: crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1), 1-36. https://doi.org/10.1029/93RG02508
    Coffin, M. F., & Eldholm, O. (2005). Large igneous provinces. Encyclopedia of geology, 315-323. https://doi.org/10.1016/B0-12-369396-9/00455-X
    Domeier, M., & Torsvik, T. H. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5(3), 303-350. https://doi.org/10.1016/j.gsf.2014.01.002
    Ernst, R. E. (2014). Introduction, definition, and general characteristics. In R. E. Ernst (Eds.), Large Igneous Provinces (pp. 1-39). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139025300.001
    Ernst, R. E., & Buchan, K. L. (2001). Large mafic magmatic events through time and links to mantle-plume heads. In R. E. Ernst, & K. L. Buchan (Eds.) Mantle plumes: their identification through time, Geological society of America Special Papers (Vol. 352, pp. 483-575): Geological Society of America. https://doi.org/10.1130/0-8137-2352-3.483
    Ernst, R. E., & Buchan, K. L. (2003). Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences, 31, 469-523. https://doi.org/10.1146/annurev.earth.31.100901.145500
    Ernst, R. E., Buchan, K. L., & Campbell, I. H. (2005). Frontiers in large igneous province research. Lithos, 79(3), 271-297. https://www.sciencedirect.com/science/article/pii/S0024493704003093
    Foulger, G. R. (2007). The “plate” model for the genesis of melting anomalies. In G. R. Foulger, & D. M. Jurdy (Eds.), Plates, Plumes and Planetary Processes, Geological society of America Special Papers (Vol. 430, pp. 1-28): Geological Society of America. https://doi.org/10.1130/2007.2430(01)
    Foulger, G. R. (2010). Plates vs plumes: a geological controversy: John Wiley & Sons. http://dx.doi.org/10.1002/9781444324860
    Foulger, G. R. (2012). Are ‘hot spots’ hot spots? Journal of Geodynamics, 58, 1-28. https://doi.org/10.1016/j.jog.2011.12.003
    Foulger, G. R., Natland, J. H., Presnall, D. C., & Anderson, D. L. (2005). Plates, plumes and paradigms, Geological society of America Special Papers (Vol. 388): Geological Society of America. https://doi.org/10.1130/SPE388
    Frost, B. R., Barnes, C. G, Collins, W. J., Arculus, R. J., Ellis, D. J., Frost, C. D. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    Ganju. P. N. (1943). The Panjal Traps: Acid and Basic volcanic rock. Proceedings of the Indian Academy of Sciences-Section B (Vol. 18, No. 5, pp. 125-131): Springer India.
    Griffiths, R. W., & Campbell, I. H. (1990). Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2), 66-78. https://doi.org/10.1016/0012-821X(90)90071-5
    Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thöni, M., & Trommsdorff, V. (1982). Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth and Planetary Science Letters, 60(2), 253-292. https://doi.org/10.1016/0012-821X(82)90007-3
    Ishikawa, A., Senda, R., Suzuki, K., Dale, C. W., & Meisel, T. (2014). Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials. Chemical Geology, 384, 27-46. http://dx.doi.org/10.1016/j.chemgeo.2014.06.013
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half-lives and specific activities of U235 and U238. Physical review C, 4(5), 1889. https://doi.org/10.1103/PhysRevC.4.1889
    Jerram, D. A., & Widdowson, M. (2005). The anatomy of Continental Flood Basalt Provinces: geological constraints on the processes and products of flood volcanism. Lithos, 79(3-4), 385-405. https://doi.org/10.1016/j.lithos.2004.09.009
    Kapoor, H. (1977). Pastannah section of Kashmir with special reference to ‘ Ophioceras’bed of Middlemiss. Journal of the palaeontological society of India, 20, 339-347.
    Keller, G. (2012). The Cretaceous–Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism. In J. A. Talent (Eds.) Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time (pp. 759-793). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-3428-1_25
    Lassiter, J. C., & DePaolo, D. J. (1997). Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints. In J. J. Mahoney, & M. F. Coffin (Eds.) Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph (Vol. 100, pp. 335-356): American Geophysical Union. https://doi.org/10.1029/GM100p0335
    Ludwig, K. R. (2012). User's Manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75.
    Lydekker, R. (1883). Geology of Kashmir and Chamba territories and the British district of Khagan. Memoirs (Vol. 22, 211-244): Geological society of India.
    McDonough, W. F. (1990). Constraints on the composition of the continental lithospheric mantle, Earth and Planetary Science Letters, 101(1), 1-18. https://doi.org/10.1016/0012-821X(90)90119-I
    McKenzie, D., & O'Nions, R. K. (1991) Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology,32(5), 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
    Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5), 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    Mathur, K. K., & Wakhaloo, S. N. (1933). The Panjal Trap. Current Science, 2(4), 126. http://www.jstor.org/stable/24205504
    Mathur, K. K., & West, W. D. (1935). Panthachuk (Srinagar, Kashmir) Rhyolite. Current Science, 3(10), 492. http://www.jstor.org/stable/24221646
    Mattinson, J. M. (2005). Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1-2), 47-66. https://doi.org/10.1016/j.chemgeo.2005.03.011
    Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
    Middlemiss, C. S. (1910). A revision of the Silurian-Trias sequence in Kashmir. Records of the Geological Survey of India, 40, 206-260.
    Nakazawa, K., & Kapoor, H. M. (1973). Spilitic pillow lava in Panjal Trap of Kashmir, India. Memoirs of the Faculty of Science, Kyoto University. Series of geology and mineralogy, 39(2), 83-98. http://hdl.handle.net/2433/186587
    Nakazawa, K., Kapoor, H. M., Ishii, K.-i., Bando, Y., Okimura, Y., & Tokuoka, T. (1975). The upper Permian and the lower Triassic in Kashmir, India. Memoirs of the Faculty of Science, Kyoto University. Series of geology and mineralogy, 42(1), 1-106. http://hdl.handle.net/2433/186607
    Papritz, K., & Rey, R. (1989). Evidence for the occurrence of Permian Panjal trap basalts in the Lesser-and Higher-Himalayas of the western syntaxis area, NE Pakistan. Eclogae Geologicae Helvetiae, 82(2), 603-627. http://doi.org/10.5169/seals-166392
    Pareek, H. (1976). On studies of the agglomeratic slate and Panjal Trap in the Jhelum, Liddar and Sind Valleys, Kashmir. Records of the Geological Survey of India, 107, 12-37.
    Pascoe, E. H. (1959). A manual of the geology of India and Burma. Govt. of India Press, Calcutta, 2, 485-1343.
    Pearce, J. A., Harris, Nigel B. W., Tindle, A. G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4), 956-983.
    Pearce, J. A. (1996). A user’s guide to basalt discrimination diagrams. In D.A. Wyman (Eds.) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12, 79-113. https://doi.org/10.1093/petrology/25.4.956
    Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1), 33-47. http://dx.doi.org/10.1007/bf00375192
    Rudnick, R. L., & Gao, S. (2003) Composition of the Continental Crust. In H. D. Holland, R. L. Rudnick, & K. K. Turekian (Eds.) The Crust, Treatise on Geochemistry (Vol. 3, pp. 1-64): Elsevier. http://dx.doi.org/10.1016/b0-08-043751-6/03016-4
    Richards, M. A., Duncan, R. A., & Courtillot, V. E. (1989). Flood basalts and hot-spot tracks: plume heads and tails. Science, 246(4926), 103-107. https://doi.org/10.1126/science.246.4926.103
    Saunders, A., & Reichow, M. (2009). The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin, 54, 20-37. https://doi.org/10.1007/s11434-008-0543-7
    Shellnutt, J. G. (2014). The Emeishan large igneous province: A synthesis. Geoscience Frontiers, 5(3), 369-394. https://doi.org/10.1016/j.gsf.2013.07.003
    Shellnutt, J. G. (2018). The Panjal Traps. In S. Sensarma, & B. C. Storey (Eds.) Large Igneous Provinces from Gondwana and Adjacent Regions, Geological Society, London, Special Publications (Vol. 463, pp. 59-86): Geological Society of London. https://doi.org/10.1144/SP463.4
    Shellnutt, J. G., Bhat, G. M., Brookfield, M. E., & Jahn, B.-M. (2011). No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions. Geophysical Research Letters, 38(19). https://doi.org/10.1029/2011GL049032
    Shellnutt, J. G., Bhat, G. M., Wang, K.-L., Brookfield, M. E., Dostal, J., & Jahn, B.-M. (2012). Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India. Chemical Geology, 334, 154-170. https://doi.org/10.1016/j.chemgeo.2012.10.022
    Shellnutt, J. G., Bhat, G. M., Wang, K.-L., Brookfield, M. E., Jahn, B.-M., & Dostal, J. (2014). Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle. Lithos, 204, 159-171. https://doi.org/10.1016/j.lithos.2014.01.008
    Shellnutt, J. G., Bhat, G. M., Wang, K.-L., Yeh, M.-W., Brookfield, M. E., & Jahn, B.-M. (2015). Multiple mantle sources of the Early Permian Panjal Traps, Kashmir, India. American Journal of Science, 315(7), 589-619. https://doi.org/10.2475/07.2015.01
    Sheth, H. C. (2007). ‘Large Igneous Provinces (LIPs)’: Definition, recommended terminology, and a hierarchical classification. Earth-Science Reviews, 85(3-4), 117-124. https://doi.org/10.1016/j.earscirev.2007.07.005
    Shirey, S. B., & Walker, R. J. (1998). The Re-Os Isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26, 423-500. https://doi.org/10.1146/annurev.earth.26.1.423
    Smith, A. D. (2013). Recycling of oceanic crust and the origin of intraplate volcanism. Australian Journal of Earth Sciences, 60(6-7), 675-680. https://doi.org/10.1080/08120099.2013.838188
    Spencer, D. A., Tonarini, S., & Pognante, U. (1995). Geochemical and Sr-Nd isotopic characterisation of higher Himalayan eclogites (and associated metabasites). European Journal of Mineralogy, 7(1), 89-102.
    Srivastava, R. (2008). Global intracratonic boninite-norite magmatism during the Neoarchean-Paleoproterozoic: Evidence from the central Indian Bastar craton. International Geology Review, 50, 61-74. https://doi.org/10.2747/0020-6814.50.1.61
    Stojanovic, D., Aitchison, J. C., Ali, J. R., Ahmad, T., & Dar, R. A. (2016). Paleomagnetic investigation of the Early Permian Panjal Traps of NW India; regional tectonic implications. Journal of Asian Earth Sciences, 115, 114-123. https://doi.org/10.1016/j.jseaes.2015.09.028
    Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A. D. Saunders, & M. J. Norry (Eds.) Magmatism in the Ocean Basins, Geological Society, London, Special Publications (Vol.42, pp.313-345): Geological Society of London. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    Svensen, H. H., Torsvik, T. H., Callegaro, S., Augland, L., Heimdal, T. H., Jerram, D. A., et al. (2018). Gondwana Large Igneous Provinces: plate reconstructions, volcanic basins and sill volumes. In S. Sensarma, & B. C. Storey (Eds.) Large Igneous Provinces from Gondwana and Adjacent Regions, Geological Society, London, Special Publications (Vol.463, pp.17-40): Geological Society of London. https://doi.org/10.1144/SP463.7
    Taylor, S. R., & McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution.
    Timmerman, M. J., Heeremans, M., Kirstein, L. A., Larsen, B. T., Spencer-Dunworth, E.-A., & Sundvoll, B. (2009). Linking changes in tectonic style with magmatism in northern Europe during the late Carboniferous to latest Permian. Tectonophysics, 473(3-4), 375-390. https://doi.org/10.1016/j.tecto.2009.03.011
    Torsvik, T. H., Smethurst, M. A., Burke, K., & Steinberger, B. (2008). Long term stability in deep mantle structure: Evidence from the ~300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth and Planetary Science Letters, 267(3-4), 444-452. https://doi.org/10.1016/j.epsl.2007.12.004
    Valdiya, K. S. (2015). The making of India: geodynamic evolution: Springer.
    Vigne, G. T. (1844). Travels in Kashmir, Ladak, Iskardo, the countries adjoining the mountain-course of the Indus, and the Himalaya, north of the Panjab. London: Henry Colburn.
    Wadia, D. N. (1934). The Cambrian–Trias sequence of North-Western Kashmir (Parts of Muzaffarabad and Baramular districts). Records of the Geological Survey of India, 68, 121-176.
    Wadia, D. N. (1961). Geology of India: Macmillan, London.
    Wang, M., Li, C., Wu, Y.-W., & Xie, C.-M. (2014). Geochronology, geochemistry, Hf isotopic compositions and formation mechanism of radial mafic dikes in northern Tibet. International Geology Review, 56(2), 187-205. https://doi.org/10.1080/00206814.2013.825076
    White, R. V., & Saunders, A. D. (2005). Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos, 79(3-4), 299-316. https://doi.org/10.1016/j.lithos.2004.09.016
    Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2), 1-33. https://doi.org/10.1016/S0012-8252(00)00037-4
    Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
    Wopfner, H., & Jin, X. C. (2009). Pangea Megasequences of Tethyan Gondwana-margin reflect global changes of climate and tectonism in Late Palaeozoic and Early Triassic times—A review. Palaeoworld, 18(2-3), 169-192. https://doi.org/10.1016/j.palwor.2009.04.007
    Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2), 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
    Workman, R. K., Hart, S. R., Jackson, M., Regelous, M., Farley, K. A., Blusztajn, J., et al. (2004). Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4). https://doi.org/10.1029/2003GC000623
    Xu, Y.-G., Wei, X., Luo, Z.-Y., Liu, H.-Q., & Cao, J. (2014). The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204, 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
    Yang, S., Chen, H., Li, Z., Li, Y., Yu, X., Li, D., & Meng, L. (2013). Early Permian Tarim Large Igneous Province in northwest China. Science China Earth Sciences, 56, 2015-2026. https://doi.org/10.1007/s11430-013-4653-y
    Zhu, D.-C., Mo, X.-X., Zhao, Z.-D., Niu, Y., Wang, L.-Q., Chu, Q.-H., et al. (2010). Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. GSA Bulletin, 122(7-8), 979-993. https://doi.org/10.1130/B30062.1
    Zindler, A., & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425

    下載圖示
    QR CODE