簡易檢索 / 詳目顯示

研究生: 吳立中
Wu, Li-Chung
論文名稱: 金奈米雙錐體/奈米棒之自組裝用於螢光增強研究
The Study of Self-Assembled Gold Nanobipyramids/Nanorods on Plasmon Enhanced Fluorescence
指導教授: 陳家俊
Chen, Chia-Chung
口試委員: 王迪彥
Wang, Di-Yan
郭聰榮
Kuo, Tsung-Rong
陳俊維
Chen, Chun-Wei
陳家俊
Chen, Chia-Chung
李紹先
Li, Shao-Sian
口試日期: 2020/07/06
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 55
中文關鍵詞: 金奈米雙錐體金奈米棒表面電漿共振表面修飾自組裝金屬螢光增強
英文關鍵詞: gold nanobipyramids, gold nanorods, localized surface plasmon resonance, surface modification, self-assembly, metal-enhanced fluorescence
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300700
論文種類: 學術論文
相關次數: 點閱:178下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金奈米材料的尖端因表面電漿共振(Localized Surface Plasmon Resonance, LSPR),在尖端處擁有較強之電場增強的有去特性。對由於金奈米顆粒表面的保護基可導致其親疏水性的改變,本研究利用不同的硫醇作為保護基修飾金奈米材,一方面控制其表面之親疏水性,另一方面可控制其懸浮於極性與非極性溶液的界面間,將金奈米材料在玻璃基板等平面上進行自組裝排列。利用掃描式電子顯微鏡觀察排列的情況,可以發現金奈米雙錐體的端點指向中心,排列成一類似寄木細工的圖樣(Yosegi patterns)。此一自組裝方法,成功的使金奈米雙錐體的端點相互靠近,並預期在金奈米材料端點對端點的間隙處,會有更強的近場電場增強。本研究中,以近紅外光螢光分子(near-infrared fluorescent dyes)的螢光增強作為研究的重點,選用Streptavidin-IR800作為螢光染劑,藉由金奈米顆粒的自組裝(self-assembly)技術排列出有序的金屬奈米薄膜圖樣,使其電場增強的性質能更加突出,相較於單純的有玻璃基板能夠有效的提升螢光的訊號強度1477倍。此一技術將使金奈米材料未來在光學及奈米生醫檢測方面有更多的應用與發展機會。

    Because of the localized surface plasmon resonance (LSPR), the gold nanoparticles show strong electric field enhancement properties, which many researchers are interested in. In this study, different thiols molecules which can control the hydrophilicity and hydrophobicity of the gold nanoparticles were used as the capping ligands to modify the surface. Furthermore, we can even control the the location of the nanoparticles to suspend in interface between polar and non-polar solutions. Then, the gold nanoparticles were dropped on a glass substrate or other planes for their self-assembly. Using the scanning electron microscope to observe the arrangements, we can find that the end-to-end arrangements of the gold nanoparticles, which are similar to the Yosgi patterns. The method successfully manipulated the end-to-end arrangement, which were close to each other by self-assembly. Strong near-field electric field enhancement can be generated in the space between the end-to-end gaps of the gold nanomaterials. In this study, we focused on the fluorescence enhancement of near-infrared fluorescent dyes (Streptavidin-IR800). After self-assembly, the gold nanoparticles showed a well-arranged pattern in this film, which makes the enhancement of the electric field, and effectively signal intensity of fluorescence by 1477 times. This method will enable gold nanoparticles to have more applications and opportunities in optics and nanomedicine in the future.

    第一章 緒論 1 1-1 奈米技術的發展 1 1-2 奈米材料之特性 4 1-3 奈米材料的應運 7 第二章 文獻回顧與動機 11 2-1 局部表面電漿共振 (Localized Surface Plasmon Resonance, LSPR) 11 2-2 金屬螢光增強 (Metal-Enhanced Flourscence, MEF) 13 2-3 金奈米雙錐體(AuNBP)的合成 15 2-4 金奈米棒(AuNR)的合成 16 2-5 金奈米雙錐體與金奈米棒之差別 17 2-6 奈米材料之自組裝(Self-Assembly) 19 2-7 Janus Particle 之特性與合成 21 2-8 研究動機與實驗目的 23 第三章 實驗設備與步驟 25 3-1 實驗藥品 25 3-2 實驗儀器設備介紹 27 3-2-1 低溫循環水槽(Water Bath) 27 3-2-2 高速冷凍型離心機(Universal Centrifuges) 28 3-2-3 微量高速離心機 29 3-2-4 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 30 3-2-5 紫外光-可見光-近紅外光分光光譜儀(UV-Visble-Near IR Spectrophotometer) 31 3-2-6 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 32 3-2-7 微陣列螢光掃描儀(Microarray Fluorescence Scanning Device) 33 3-3 實驗步驟 34 3-3-1 金奈米雙錐體之合成 34 3-3-2 金奈米雙錐體之純化 35 3-3-3 金奈米棒之合成 36 3-3-4 金奈米材料之轉相與保護基修飾 37 3-3-5 金奈米材料之自組裝 37 3-3-6 自組裝材料之螢光測試 38 第四章 結果與討論 39 4-1 金奈米材料之合成與純化 39 4-2 Janus Particles之合成 42 4-3 金奈米材料之自組裝 44 4-4 螢光增強測試 49 第五章 結論與未來展望 51 第六章 參考文獻 52

    (1) 牟中原; 陳家俊 科學發展 2000, 281.
    (2) Devatha, C. P.; Thalla, A. K. 2018, 169.
    (3) Berends, A. C.; de Mello Donega, C. The journal of physical chemistry letters 2017, 8, 4077.
    (4) Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E. M.; Frieder, J.; Wu, J.; Farokhzad, O. C. Angewandte Chemie 2012, 51, 11853.
    (5) Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad‐Schifferli, K. ACS Nano 2009, 3, 80.
    (6) Hu-Lieskovan, S.; Heidel, J. D.; Bartlett, D. W.; Davis, M. E.; Triche, T. J. Cancer research 2005, 65, 8984.
    (7) Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y. ACS Biomaterials Science & Engineering 2017, 3, 608.
    (8) Yu, S.; Wilson, A. J.; Heo, J.; Jain, P. K. Nano letters 2018, 18, 2189.
    (9) Chen, L.; Lu, L.; Wang, S.; Xia, Y. ACS sensors 2017, 2, 781.
    (10) Willets, K. A.; Van Duyne, R. P. Annual review of physical chemistry 2007, 58, 267.
    (11) Geddes, C. D.; Lakowicz, J. R. Journal of fluorescence 2002, 12, 121.
    (12) Zhang, Y.; Aslan, K.; Previte, M. J.; Geddes, C. D. Journal of fluorescence 2007, 17, 627.
    (13) Lee, S.; Mayer, K. M.; Hafner, J. H. Analytical Chemistry 2009, 81, 4450.
    (14) Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q.-H.; Wang, J. Advanced Optical Materials 2015, 3, 801.
    (15) Lee, J. H.; Gibson, K. J.; Chen, G.; Weizmann, Y. Nature communications 2015, 6, 7571.
    (16) Ni, W.; Kou, X.; Yang, Z.; Wang, J. ACS Nano 2008, 2, 677.
    (17) Song, J. H.; Kim, F.; Kim, D.; Yang, P. Chemistry – A European Journal 2005, 11, 910.
    (18) Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B. Nano letters 2013, 13, 765.
    (19) Cao, J.; Sun, T.; Grattan, K. T. V. Sensors and Actuators B: Chemical 2014, 195, 332.
    (20) Liu, M.; Guyot-Sionnest, P.; Lee, T.-W.; Gray, S. K. Physical Review B 2007, 76.
    (21) Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. Nature Materials 2008, 7, 527.
    (22) Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Nature Nanotechnology 2011, 6, 763.
    (23) Dill, K. A.; MacCallum, J. L. Science 2012, 338, 1042.
    (24) Chen, I. A.; Walde, P. Cold Spring Harb Perspect Biol 2010, 2, a002170.
    (25) Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Science 2012, 336, 434.
    (26) Shevchenko, E. V.; Talapin, D. V. In Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications; Rogach, A. L., Ed.; Springer Vienna: Vienna, 2008, p 119.
    (27) Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989.
    (28) Piccinini, E.; Pallarola, D.; Battaglini, F.; Azzaroni, O. Molecular Systems Design & Engineering 2016, 1, 155.
    (29) Boles, M. A.; Engel, M.; Talapin, D. V. Chemical Reviews 2016, 116, 11220.
    (30) Hu, H.; Ji, F.; Xu, Y.; Yu, J.; Liu, Q.; Chen, L.; Chen, Q.; Wen, P.; Lifshitz, Y.; Wang, Y.; Zhang, Q.; Lee, S.-T. ACS Nano 2016, 10, 7323.
    (31) Walther, A.; Müller, A. H. E. Chemical Reviews 2013, 113, 5194.
    (32) Pardehkhorram, R.; Bonaccorsi, S.; Zhu, H.; Gonçales, V. R.; Wu, Y.; Liu, J.; Lee, N. A.; Tilley, R. D.; Gooding, J. J. Chemical Communications 2019, 55, 7707.
    (33) Iida, R.; Kawamura, H.; Niikura, K.; Kimura, T.; Sekiguchi, S.; Joti, Y.; Bessho, Y.; Mitomo, H.; Nishino, Y.; Ijiro, K. Langmuir 2015, 31, 4054.
    (34) Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Chemical Reviews 2011, 111, 3888.
    (35) Ruan, Q.; Shao, L.; Shu, Y.; Wang, J.; Wu, H. Advanced Optical Materials 2014, 2, 65.
    (36) Nikoobakht, B.; El-Sayed, M. A. Chemistry of Materials 2003, 15, 1957.
    (37) Kou, X.; Zhang, S.; Tsung, C.-K.; Yeung, M. H.; Shi, Q.; Stucky, G. D.; Sun, L.; Wang, J.; Yan, C. The Journal of Physical Chemistry B 2006, 110, 16377.
    (38) Kou, X.; Ni, W.; Tsung, C.-K.; Chan, K.; Lin, H.-Q.; Stucky, G. D.; Wang, J. Small 2007, 3, 2103.
    (39) Lermé, J.; Baida, H.; Bonnet, C.; Broyer, M.; Cottancin, E.; Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F.; Pellarin, M. The journal of physical chemistry letters 2010, 1, 2922.
    (40) Kirschner, M. S.; Lethiec, C. M.; Lin, X.-M.; Schatz, G. C.; Chen, L. X.; Schaller, R. D. ACS Photonics 2016, 3, 758.
    (41) Qin, F.; Cui, X.; Ruan, Q.; Lai, Y.; Wang, J.; Ma, H.; Lin, H.-Q. Nanoscale 2016, 8, 17645.
    (42) Liu, W.; Liu, D.; Zhu, Z.; Han, B.; Gao, Y.; Tang, Z. Nanoscale 2014, 6, 4498.
    (43) Nie, Z.; Petukhova, A.; Kumacheva, E. Nature Nanotechnology 2010, 5, 15.
    (44) Wang, T.; Zhuang, J.; Lynch, J.; Chen, O.; Wang, Z.; Wang, X.; LaMontagne, D.; Wu, H.; Wang, Z.; Cao, Y. C. Science 2012, 338, 358.
    (45) Ye, X.; Chen, J.; Engel, M.; Millan, J. A.; Li, W.; Qi, L.; Xing, G.; Collins, J. E.; Kagan, C. R.; Li, J.; Glotzer, S. C.; Murray, C. B. Nature Chemistry 2013, 5, 466.
    (46) Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. Nature Materials 2012, 11, 131.
    (47) Miszta, K.; de Graaf, J.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; Ceseracciu, L.; Cingolani, R.; van Roij, R.; Dijkstra, M.; Manna, L. Nature Materials 2011, 10, 872.
    (48) Frenkel, D. Nature Materials 2015, 14, 9.
    (49) Gong, J.; Newman, R. S.; Engel, M.; Zhao, M.; Bian, F.; Glotzer, S. C.; Tang, Z. Nature communications 2017, 8, 14038.
    (50) Gwo, S.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X. Chemical Society Reviews 2016, 45, 5672.
    (51) Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L.; Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nature Nanotechnology 2017, 12, 73.
    (52) Gao, B., Arya, G. & Tao, A. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nature Nanotech 7, 433–437 (2012).
    (53) O’Brien, M. N.; Jones, M. R.; Lee, B.; Mirkin, C. A. Nature Materials 2015, 14, 833.
    (54) Wei, J.; Niikura, K.; Higuchi, T.; Kimura, T.; Mitomo, H.; Jinnai, H.; Joti, Y.; Bessho, Y.; Nishino, Y.; Matsuo, Y.; Ijiro, K. Journal of the American Chemical Society 2016, 138, 3274.
    (55) Wang, Q.; Wang, Z.; Li, Z.; Xiao, J.; Shan, H.; Fang, Z.; Qi, L. Science Advances 2017, 3, e1701183.

    下載圖示
    QR CODE