簡易檢索 / 詳目顯示

研究生: 戴宏碩
Hung-Shou Tai
論文名稱: 使用在彩色影像上的三邊雜訊濾波器之硬體架構設計
The Hardware Architecture Design of Trilateral Noise Filter for Color Images
指導教授: 高文忠
Kao, Wen-Chung
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 三邊濾波器晶片設計排序絕對值差影像處理晶片硬體設計
英文關鍵詞: Trilateral filter, hardware design, chip design, rank-ordered absolute difference, image processing chip
論文種類: 學術論文
相關次數: 點閱:485下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在影像處理當中,清楚呈現邊緣,同時也去除不必要的雜訊是最基本的工作。當我們使用數位相機截取影像時,很常見的是彩色影像當中摻雜了各式各樣的雜訊,尤其是在低亮度的環境下使用高增益(ISO)值取得的影像。因此,雜訊濾波器在數位相機中是不可或缺的模組。而雜訊濾除的最大問題是會降低影像的銳利度,換句話說,光學鏡頭瑕疵對於影像的影響就有如低通濾波器一般,它會導致影像的模糊情形,習慣上,這樣的情形會應用邊緣增強演算法來改進影像的銳利度,但做邊緣增強的影像處理也常常會同時將雜訊的訊號也同時增強;所以,在做邊緣增強前,對於雜訊有效的濾除是非常重要的。在本論文中,我們將比較一個三邊濾波器與目前較常見濾波器的效能。論文中對三邊濾波器與常見濾波器做軟體模擬比較,也將此三邊濾波器的硬體以HDL語言實現,以便在影像處理晶片中使用。

    Removing noise while preserving and enhancing edges is one of the most fundamental operations of image/video processing. When taking pictures with digital cameras, it is frequently found that the color images are corrupted by miscellaneous noise, especially images get with high ISO values in low luminance. Hence, noise filtering is a necessary module in digital still cameras. The difficulty of designing noise filter is that the filter will also reduce the sharpness of the image. On the other hand, optical lens imperfections are usually equivalent to spatial low pass filters and tend to result in blurred images. It is customary to apply edge enhancement algorithm on the image in order to improve the sharpness, but this process usually increase the noise level as a by-product. Hence, an efficient noise filter is very important before edge enhancement. In this paper, the efficiency of trilateral filter and other popular filters are compared briefly, and the trilateral filter is implemented by HDL language for image processing chip.

    第一章 緒論 1 1.1 研究背景 1 1.2 相關研究 7 1.3 研究動機 10 1.4 本文所提的方式 11 1.5 本文的組織架構 12 第二章 三邊濾波器的影像演算法流程架構 13 2.1 數位影像之雜訊 13 2.2 雜訊濾除演算法相關研究 15 2.2.1 低通距離濾波器(low-pass domain filter) 19 2.2.2 相似度濾波器(range filter) 20 2.2.3 雙邊濾波器(bilateral filter) 22 2.3 三邊濾波器簡介 27 第三章 三邊濾波器的硬體架構設計 31 3.1 三邊濾波器數學描述式 31 3.2 三邊濾波器電路設計 34 3.3 控制單元(control unit) 45 3.4 實驗平台介紹 46 第四章 實驗結果 48 4.1 硬體架構設計 48 4.1.1 Phase1的電路 52 4.1.2 Phase2的電路 53 4.1.3 Phase3&4的電路 55 4.1.4 Phase5的電路 57 4.1.5 Phase6的電路 58 4.1.6 Phase7的電路 60 4.1.7 Control Unit的電路 63 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 65 參考文獻 66

    [1] R. C. Gonzalez and R. E. Woods, Digital image processing, Pearson Education, Upper Saddle River, New Jersey, 2002.
    [2] http://inventors.about.com/library/inventors/bldigitalcamera.htm
    [3] T. Chen and H. R. Wu, “Space variant median filters for the restoration of impulse noise corrupted images,” IEEE Trans. Circuit and Systems, vol. 48, no. 8, pp. 784-789, Aug. 2001.
    [4] L. R. Rabiner, M. R. Sambur, and C. E. Schmidt, ”Applications of a nonlinear smoothing algorithm to speech processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, PP. 552-557, Sec. 1975.
    [5] N. S. Jayant, “Average and median-based smoothing techniques for improving digital speech quality in the presence of transmission errors,” IEEE Trans. Commun., vol. COM-24, pp. 1043-1045, Sep. 1976.
    [6] W. K. Pratt, “Median filtering,” in Semiannual Report, Image Processing Institute, Univ. of Southern California, pp. 116-123, Sep. 1975.
    [7] B. R. Frieden, “A new restoring algorithm for the preferential enhancement of edge gradients,” J. Pot. Soc. Amer., vol. 66, pp. 280-283, 1976.
    [8] L. Yin and R. Yang, “Circuits and systems exposition — weighted median filters: a tutorial,” IEEE Trans., Circuit and Systems, vol. 42, no. 10, pp. 583-601, Oct. 1995.
    [9] R. Garnett, T. Huegerich, C. Chui, “A universal noise removal algorithm with an impulse detector“, IEEE Trans., image processing, vol. 14, no. 11, Nov. 2005.
    [10] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans., pattern analysis and machine intelligence, vol. 12, no. 7, Jul. 1990.
    [11] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. 6th Int. Conf. Computer Vision, New Delhi, India, pp. 839-846, 1998.
    [12] P. S. Marc and J. S. Chen, “Adaptive smoothing: a general tool for early vision,” IEEE Trans., pattern analysis and machine intelligence, vol. 13, no. 6, Jun. 1991.
    [13] R. Garnett, T. Huegerich, C. Chui, and W. He, “A universal noise removal algorithm with an impulse detector,” IEEE Trans. Image Processing, vol. 14, no. 11, pp.1747-1754, Nov. 2005.
    [14] M. Basu, ”Gaussian-based edge-detection methods―a survey,” IEEE Trans., Systems, man, and cybernetics, vol. 32, no. 3, pp. 252-260, Aug. 2002.
    [15] J. J. Francis and G. de Jager, “The bilateral median filter,” CiteSeer, 2003.
    [16] H. C. Lee, Introduction to color image science, Cambridge University Press, 2005.
    [17] W. C. Kao, H. S. Tai, C. P. Shen, J. A. Ye, and H. F. Ho, “A pipelined architecture design for trilateral noise filtering,” accepted for presenting in Proc. IEEE International Symposium Circuits and Systems (ISCAS), United States, May 2007.

    QR CODE