簡易檢索 / 詳目顯示

研究生: 曹子軒
Tzu-Hsuan Tsao
論文名稱: 利用生態棲位模擬探討鄰域鳥種間之棲位分化
Niche differentiation between parapatric parrotbills (Paradoxornis webbianus and P. alphonsianus)? A test using ecological nuche modeling
指導教授: 李佩珍
Lee, Pei-Jen
李壽先
Li, Shou-Hsien
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 53
中文關鍵詞: 競爭生態棲位模擬鴉雀屬棲位分化鄰域分佈同域種化
英文關鍵詞: competition, ecological niche modeling, Paradoxornis, niche partitioning, parapatric distribution, sympatric speciation
論文種類: 學術論文
相關次數: 點閱:251下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物種競爭是決定物種分布範圍、群聚結構以及生態種化的關鍵因素之一。而競爭排除被認為是棲位相近的二物種,在地理上鄰域分布的主要原因。然而,要在自然的情況下證明競爭排除則相當困難。本研究以分布於亞洲的二近緣鳥種:棕頭鴉雀(Paradoxornis webbianus)以及灰喉鴉雀(Paradoxornis alphonsianus),利用生態棲位模擬來預測其潛在分布。由現今的潛在分布顯示二物種在中國四川具有一潛在共域區,而二物種在此區域內的實際分布則為非隨機分布(宗頭鴉雀分布於東北方,而灰喉鴉雀位於西南)。棲位相同檢測的結果顯示二物種在此潛在共域區內佔有不同的氣候棲位。此外,判別分析的結果顯示,溫度變異最可能是導致二物種分化的棲位面向:棕頭鴉雀可能比灰喉鴉雀更能忍受氣溫的變動。模擬二物種在末次冰河最盛期(約二萬一千年)的潛在分布顯示,二物種自從二萬五千年至三萬年分化以來,皆維持一至的共域區。因此,二物種在現今潛在共域區內的空間劃分很可能是導因於競爭排除而不是近期的次級接觸。本研究的結果支持物種間的競爭能夠維持二近緣物種的鄰域分布。因此,由競爭以及棲位分化所導致的生態種化,很可能是造成近緣物種間(如棕頭鴉雀及灰喉鴉雀)快速分化的重要因素。

    Competition is one of the key mechanisms determining species range limits, community structures, and ecological speciation. At geographic scale, competitive exclusion is often proposed to be a cause of parapatric distribution between species that have similar niche requirements. However, it is exceedingly difficult to demonstrate competitive exclusion in natural settings. In this study, I used ecological niche modeling to predict potential distributions of two closely-related avian species in Asia, Paradoxornis webbianus, and P. alphonsianus. The current-day distributions of the two species indicate that they share an area of potential sympatric zone in Southwestern China, within which both species exhibit non-random spatial distributions (P. webbianus in the northeastern region, and P. alphonsianus in the southwestern region). The niche identity test shows that the two species occupy different niches within the sympatric zone. Furthermore, the discriminant analysis points to temperature variability as the most likely niche dimensions along which P. webbianus and P. alphonsianus differentiate. Paradoxornis webbianus appears to be more tolerant of temperature fluctuations than P. alphonsianus. The potential distributions of the two species during the last glacial maximum (21,000 years ago) suggest that they have maintained a similar area of potential sympatry since their divergence approximately 30,000 to 25,000 years ago. Therefore, their spatial segregation within the current-day sympatric zone is more likely a result of competition than secondary contact. In conclusion, this study provided strong support for the role of competition in maintaining parapatric distribution between two recently-diverged species. Ecological speciation through competition and niche partitioning, therefore, might play a key role in the rapid divergence among closely-related species such as P. webbianus and P. alphonsianus.

    Abstract ................................................. i 摘要 ................................................... iii Introduction ............................................. 1 Method and Materials ..................................... 7 Study area .............................................. 7 Species presence records ................................ 7 Environmental data layers ............................... 9 Modeling algorithm ..................................... 10 Test of random spatial distribution .................... 12 Test of niche equivalency and niche partitioning ....... 13 Test of secondary contact .............................. 15 Results ................................................. 16 Current-day sympatric zone ............................. 16 Non-random distribution and niche partitioning in the sympatric zone .......................................... 16 Last glacial maximum distributions and secondary contact ......................................................... 18 Discussion .............................................. 19 Niche partitioning and competition ..................... 19 Ecological parapatry ................................... 21 Secondary contact and non-equilibrium distribution ..... 22 Implication and future work ............................ 23 Literature cited ........................................ 25   Table ....................................................34 Table 1. The 19 bioclimate variables in WorldClim, and their current-day and last glacial maximum ranges for the study area .............................................. 34 Table 2. The structure matrix of the first canonical discriminant function, and the discriminant loadings of original bioclimatic variables .......................... 35 Figure .................................................. 36 Figure 1. The outcomes of competitive exclusion between two species ................................................. 36 Figure 2. The study area and species presence records .. 37 Figure 3. The binary distributions of P. webbianus and P. alphonsianus ............................................ 38 Figure 4. The potential sympatric zone of P. webbianus and P. alphonsianus ......................................... 39 Figure 5. The presence records of P. webbianus and P. alphonsianus within current-day sympatric zone .......... 40 Figure6. The actual and null average nearest neighbor distance (ANND) of P. webbianus and P. alphonsianus ..... 41 Figure 7. The actual and null D and I values of P. webbianus and P. alphonsianus ........................... 42 Figure 8. The ranges of temperature seasonality and isothermality occupied by P. webbianus and P. alphonsianus within the sympatric zone ............................... 43 Figure 9. The binary distributions of P. webbianus and P. alphonsianus during last glacial maximum (LGM) .......... 44 Appendix ................................................ 45 Appendix I. The presence records of P. webbianus and P. alphonsianus ............................................ 45 Appendix II. Map of the study area and contact region between P. webbianus and P. alphonsianus ................ 46 Appendix III. Preliminary tests on the changes in test AUC values with increasing study areas for P. webbianus and P. alphonsianus ............................................ 47 Appendix IV. Predicted distributions of P. webbianus and P. alphonsianus with and without low resolution data points ......................................................... 48 Appendix V. Predicted distributions of P. webbianus and P. alphonsianus with original and trimmed data sets ........ 49 Appendix VI. The effects of thresholds on predicted sympatric zone of P. webbianus and P. alphonsianus, and on statistical test results ................................ 50 Appendix VII. Predicted distributions of P. webbianus and P. alphonsianus based on five and 19 bioclimatic variables ......................................................... 51 Appendix VIII. The first canonical discriminant function scores of P. webbianus and P. alphonsianus .............. 52 Appendix IX. The probability distributions of P. webbianus and P. alphonsianus during last glacial maximum ......... 53

    Acevedo P., Ward A.I., Real R. & Smith G.C. (2010). Assessing biogeographical relationships of ecologically related species using favourability functions: a case study on British deer. Divers. Distrib., 16, 515-528.
    Agashe D. & Bolnick D.I. (2010). Intraspecific genetic variation and competition interact to influence niche expansion. Proc. R. Soc. B, 277, 2915-2924.
    Anderson R.P., Peterson A.T. & Gomez-Laverde M. (2002). Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos, 98, 3-16.
    Anderson R.P. & Raza A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr., 37, 1378-1393.
    Araujo M.B. & Pearson R.G. (2005). Equilibrium of species’ distributions with climate. Ecography, 28, 693-695.
    Berendse F. (1983). Interspecific competition and niche differentiation between Plantago lanceolata and Anthoxanthum odoratum in a natural hayfield. J. Ecol., 71, 379-390.
    Beyer H. (2011). Geospatial modelling environment, version 0.5.5 Beta. www.spatialecology.com
    Bolnick D.I. (2001). Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature, 410, 463-466.
    Bull C.M. (1991). Ecology of parapatric distributions. Annu. Rev. Ecol. Syst., 22, 19-36.
    Cadena C.D. & Loiselle B.A. (2007). Limits to elevational distributions in two species of emberizine finches: disentangling the role of interspecific competition, autoecology, and geographic variation in the environment. Ecography, 30, 491-504.
    Clark P.J. & Evans F.C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35, 445-453.
    Collins W.D., Bitz C.M., Blackmon M.L., Bonan G.B., Bretherton C.S., Carton J.A., Chang P., Doney S.C., Hack J.J., Henderson T.B., Kiehl J.T., Large W.G., McKenna D.S., Santer B.D. & Smith R.D. (2006). The community climate system model version 3 (CCSM3). J. Climate., 19, 2122-2143.
    Connor E.F. & Bowers M.A. (1987). The spatial consequences of interspecific competition. Ann. Zool. Fenn., 24, 213-226.
    Costa G.C., Wolfe C., Shepard D.B., Caldwell J.P. & Vitt L.J. (2008). Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J. Biogeogr., 35, 637-646.
    Cunningham H.R., Rissler L.J. & Apodaca J.J. (2009). Competition at the range boundary in the slimy salamander: using reciprocal transplants for studies on the role of biotic interactions in spatial distributions. J. Anim. Ecol., 78, 52-62.
    Davis, M.B. (1986). Climatic instability, time lags, and community disequilibrium. In: Community Ecology (eds Diamond, J. & Case, T.J.). Harper & Row, New York, pp. 269–284.
    Dormann C.F. (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Globa.l Ecol. Biogeogr., 16, 129-138.
    Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S. & Zimmermann N.E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
    Elith J., Phillips S.J., Hastie T., Dudik M., Chee Y.E. & Yates C.J. (2011). A statistical explanation of MaxEnt for ecologists. Divers. Distrib., 17, 43-57.
    Finstad A.G., Forseth T., Jonsson B., Bellier E., Hesthagen T., Jensen A.J., Hessen D.O. & Foldvik A. (2011). Competitive exclusion along climate gradients: energy efficiency influences the distribution of two salmonid fishes. Global. Change. Biol., 17, 1703-1711.
    Futuyma, D.J. & Moreno, G. (1988). The evolution of ecological specialisation. Annu. Rev. Ecol. Syst., 19, 207-233.
    Gause G.F. (1934). The struggle for existence. The Williams & Wilkins company, Baltimore.
    Gause G.F. & Witt A.A. (1935). Behavior of mixed populations and the problem of natural selection. Am. Nat., 69, 596-609.
    Goreaud F. & Pelissier R. (2003). Avoiding misinterpretation of biotic interactions with the intertype K-12-function: population independence vs. random labelling hypotheses. J. Veg. Sci., 14, 681-692.
    Guisan A. & Zimmermann N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Model., 135, 147-186.
    Hernandez P.A., Graham C.H., Master L.L. & Albert D.L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785.
    Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978.
    Hortal J., Jimenez-Valverde A., Gomez J.F., Lobo J.M. & Baselga A. (2008). Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos, 117, 847-858.
    Hutchinson G.E. (1957). Concluding remarks. Cold Spring Harbor Symp. Quant. Biol., 22, 415-427.
    Julliard R., Clavel J., Devictor V., Jiguet F. & Couvet D. (2006). Spatial segregation of specialists and generalists in bird communities. Ecol. Lett., 9, 1237-1244.
    Kearney M. (2006). Habitat, environment and niche: what are we modelling? Oikos, 115, 186-191.
    Kearney M. & Porter W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett., 12, 334-350.
    Kozak K.H., Graham C.H. & Wiens J.J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends. Ecol. Evol., 23, 141-148.
    Lee J.W., Kim H.Y. & Hatchwell B.J. (2010). Parental provisioning behaviour in a flock-living passerine, the Vinous-throated Parrotbill Paradoxornis webbianus. J. Ornithol., 151, 483-490.
    Liu H.J., Tin T.S., Fang W.H., Lin W.H., Tsai M.C. & Yen C.W. (2010). The Avifauna of Taiwan. Forestry Bureau, Taipei.
    Lobo J.M., Jiménez-Valverde A. & Real R. (2007). AUC: a misleading measure of the performance of predictive distribution models. Global. Ecol. Biogeogr., 17, 145-151.
    Lu Z., Zhou F., Pan H.P. & Xu Y.L. (2006). New record of bird species in Guangxi—Paradoxornis alphonsianus. Journal of Guangxi Agricultural and Biological Science, 25, 1.
    Lubchenco J. (1980). Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology, 61, 333-344.
    MacKinnon J.R., Phillipps K. & He F. (2000). A field guide to the birds of China. Oxford University Press.
    Murray J.V., Goldizen A.W., O'Leary R.A., McAlpine C.A., Possingham H.P. & Choy S.L. (2009). How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brush-tailed rock-wallabies Petrogale penicillata. J. Appl. Ecol., 46, 842-851.
    Nielsen S.E., Johnson C.J., Heard D.C. & Boyce M.S. (2005). Can models of presence-absence be used to scale abundance? - Two case studies considering extremes in life history. Ecography, 28, 197-208.
    Pearce J. & Ferrier S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133, 225-245.
    Pearson R.G., Raxworthy C.J., Nakamura M. & Peterson A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr., 34, 102-117.
    Pellissier L., Brathen K.A., Pottier J., Randin C.F., Vittoz P., Dubuis A., Yoccoz N.G., Alm T., Zimmermann N.E. & Guisan A. (2010). Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33, 1004-1014.
    Peterson A.T. (2007). Why not WhyWhere: The need for more complex models of simpler environmental spaces. Ecol. Model., 203, 527-530.
    Peterson A.T. (2011). Ecological niche conservatism: a time-structured review of evidence. J. Biogeogr., 38, 817-827.
    Phillips S.J., Anderson R.P. & Schapire R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model., 190, 231-259.
    Phillips S.J., Dudik M. & Schapire R.E. (2004). A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on machine learning. ACM Banff, Alberta, Canada, p. 83.
    Phillips S.J. & Dudik M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
    Pigot A.L., Owens I.P.F. & Orme C.D.L. (2010). The environmental limits to geographical range expansion in birds. Ecol. Lett., 13, 705-715.
    Pulliam H.R. (2000). On the relationship between niche and distribution. Ecol. Lett., 3, 349-361.
    Reddy S. & Davalos L.M. (2003). Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr., 30, 1719-1727.
    Ritchie E.G., Martin J.K., Johnson C.N. & Fox B.J. (2009). Separating the influences of environment and species interactions on patterns of distribution and abundance: competition between large herbivores. J. Anim. Ecol., 78, 724-731.
    Robson C. (2007). Handbook of the birds of the world, Vol 12. Lynx Edicions, Barcelona.
    Rodder D. & Engler J.O. (2011). Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global. Ecol. Biogeogr., 20, 915-927.
    Root T. (1988). Energy constraints on avian distributions and abundances. Ecology, 69, 330-339.
    Rosenzweig M.L. (1978). Competitive speciation. Biol. J. Linn. Soc., 10, 275-289.
    Schoener T.W. (1968). Anolis lizards of bimini - resource partitioning in a complex fauna. Ecology, 49, 704-726.
    Schoener T.W. (1974). Resource partitioning in ecological communities. Science, 185, 27-39.
    Schluter D. (1994). Experimental evidence that competition promotes divergence in sdaptive radiation. Science, 266, 798-801.
    Segurado P., Araujo M.B. & Kunin W.E. (2006). Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol., 43, 433-444.
    Sexton J.P., McIntyre P.J., Angert A.L. & Rice K.J. (2009). Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. S., 40, 415-436.
    Seoane J., Bustamante J. & Diaz-Delgado R. (2005). Effect of expert opinion on the predictive ability of environmental models of bird distribution. Conserv. Biol., 19, 512-522.
    Soberón J. & Peterson A.T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform., 2, 1-10.
    Tinker M.T., Bentall G. & Estes J.A. (2008). Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc. Natl. Acad. Sci. USA, 105, 560-565.
    Taniguch Y. & Nakano S. (2000). Condition-specific competition: Implications for the altitudinal distribution of stream fishes. Ecology, 81, 2027-2039.
    Vaart A.W. (2000). Asymptotic statistics. Cambridge University Press.
    Veloz S.D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr., 36, 2290-2299.
    Violle C., Nemergut D.R., Pu Z.C. & Jiang L. (2011). Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett., 14, 782-787.
    Warren D.L., Glor R.E. & Turelli M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883.
    Warren D.L., Glor R.E. & Turelli M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607-611.
    Wethey D.S. (2002). Biogeography, competition, and microclimate: The barnacle Chthamalus fragilis in New England. Integr. Comp. Biol., 42, 872-880.
    Wiens J.J., Ackerly D.D., Allen A.P., Anacker B.L., Buckley L.B., Cornell H.V., Damschen E.I., Davies T.J., Grytnes J.A., Harrison S.P., Hawkins B.A., Holt R.D., McCain C.M. & Stephens P.R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett., 13, 1310-1324.
    Wiens J.J. & Graham C.H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. S., 36, 519-539.
    Wilson, D.S. & Yoshimura, J. (1994). On the coexistence of specialists and generalists. Am. Nat., 144, 692-707.
    Wisz M.S., Hijmans R.J., Li J., Peterson A.T., Graham C.H., Guisan A. & Distribut N.P.S. (2008). Effects of sample size on the performance of species distribution models. Divers. Distrib., 14, 763-773.
    Wu Z. & Chen K. (1986). The Avifauna of Guizhou. Guizhou People's Publishing House.
    Yang L. (2004). The avifauna of Yunnan China: Passeriformes. Yunnan Science and Technology Press.
    Yeung C.K.L., Lin R.C., Lei F.M., Robson C., Hung L.M., Liang W., Zhou F.S., Han L.X., Li S.H. & Yang X.J. (2011). Beyond a morphological paradox: Complicated phylogenetic relationships of the parrotbills (Paradoxornithidae, Aves). Mol. Phylogenet. Evol., 61, 192-202.

    下載圖示
    QR CODE