研究生: |
黃資淵 Huang Tz-Yuan |
---|---|
論文名稱: |
鉺離子佈植波導之特性研究與應用 Study of the Unique Properties and Applications of Erbium Ion Implanted Waveguide |
指導教授: |
曹士林
Tsao, Shyh-Lin 彭保仁 Pong, Bao-Jen |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 掺鉺波導 、光放大器 、離子植入法 、平面光波導 、透鏡光纖 、多模干涉脊狀波導 |
英文關鍵詞: | Erbium doped waveguide, optical amplifier, ion implantation, planar optical waveguide, Lensed fiber, multi-mode interference waveguide |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在單根掺鉺波導放大器(EDWA)中,我們研究單根波導之不同長度及不同激發雷射能量產生不同之淨增益,並讓該掺鉺波導在不同的長度範圍與數種激發雷射能量的比較下,分析其可產生最大增益之長度。我們也將其放入分波多工系統中分析其在不同的波長與激發能量之間的關係並整理增益與雜訊指數之平坦度。
在2 x 2掺鉺多模干涉波導實驗方面,我們將一個2 × 2通道的多模干涉脊狀波導藉由離子植入法將鉺離子打入波導中,並以1550nm可調雷射、準直鏡、單模光纖與光頻譜儀建構成之對光系統去量測其信號之變化,並研究結合掺鉺平面光波導放大器與分波多工元件之可行性。
In single erbium doped waveguide amplifier (EDWA), we research single waveguide of various lengths and pump power to produce different net gain and compare with different ranges of length and pump power to get the maximum gain at length. We also insert EDWA into WDM system to analyze the performance between various wavelengths and pump powers and analyze the flatness of gain and noise figure.
In experiment of 2x2 Erbium doped MMI waveguide, we implanted the ion of erbium into the 2x2 Multimode Interference (MMI) waveguide by ion implantation, and with 1550nm tunable laser, collimater, single mode fiber and optical spectrum analyzer (OSA) is formed an alignment system to measure and examine the change of output signal, and we study the feasibility of combining erbium doped waveguide optical amplifier and WDM element.
[1] G. N. van den Hoven, R. J. I. M. Koper, and A. Polman “Net optical gain at 1.53μm in Er-doped Al2O3 waveguide on silicon” Appl. Phys. Lett. 68 (14), 1 April 1996.
[2] E. Desurvire, Phys. Today 47, 20, 1994.
[3] G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong,
IEEE Photonics Technol. Lett. 5, 1185 1993.
[4] K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, Electron. Lett. 30, 856 1994.
[5] M. Hempstead, J. E. Roma´n, C. C. Ye, J. S. Wilkinson, P. Camy, P.
Laborde, and C. Lerminiaux, in Proceedings of the 7th European Conference on Integrated Optics, Delft, 3–6 April 1995 (unpublished), p. 233.
[6] D. Barbier, P. Gastaldo, B. Hyde, J. M. Jouanno, and A. Kevorkian, in
Proceedings of the 7th European Conference on Integrated Optics, Delft, 3–6 April 1995 (unpublished), p. 241.
[7] P.G. Kik and A. Polman “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535μm”, Appl. Phys. Lett. 71 (20), 17 November 1997.
[8] 1W. J. Miniscalco, J. Lightwave Technol. 9, 234, 1991.
[9] P. Camy, J. E. Roman, F. W. Willems, M. Hempstead, J. C. van der
Plaats, C. Prel, A. Beguin, A. M. J. Koonen, J. S. Wilkinson, and C.
Lerminiaux, Electron. Lett. 32, 321, 1996.
[10] J. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. S. Andre, and A. Kevorkian, Proceedings of ECOC’96, 1996, p. 123.
[11] P.G. Kik and A. Polman “Erbium doped optical waveguide amplifiers
on silicon” MRS Bulletin 23(4), 48, April 1998.
[12] W. J. Miniscalco, J. Lightwave Technol. 9, 1991 p. 234
[13] A. Polman, J. Appl. Phys. 82, 1997 p. 1
[14] P. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, Electron. Lett. 23, 1987 p. 1026
[15] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and
Applications, John Wiley & Sons, 1994
[16] G. N. van den Hoven, Er doped photonic materials on silicon, PhD
thesis, University of Utrecht, 1996
[17] Condensed Matter and Materials Physics National Research Council,
National Academic, Washington, DC, 1999.
[18] E. Desurvire, “The golden age of optical fiber amplifiers,” Phys.
Today 47(1), 20–27, 1994.
[19] B. J. Ainslie, “A review of the fabrication and properties of
erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9,
220–227, 1991.
[20] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12, 888–890, 1987.
[21] C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539, 1989.
[22] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
1550nm,” J. Lightwave Technol. 9, 234–250, 1991.
[23] J. C. Wright, “Up-conversion and excited state energy transfer in
rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed., Vol. 15 in Topics in Applied Physics (Springer, Heidelberg, 1976), pp. 238–295.
[24] G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiov-
anni, and A. J. Bruce, “Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides,” IEEE Photon. Technol. Lett. 5, 1014–1016, 1993.
[25] Albert Polman, Frank C. J. M. van Veggel*, “Broadband sensitizers
for erbium-doped planar optical amplifiers: Review”, Optical Society of America, 2004.
[26] W. J. Miniscalco, ‘‘Erbium-doped glasses for fiber amplifiers at 1500
nm,’’ J. Lightwave Technol. 9, 234–250, 1991.
[27] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and
Applications, Wiley, New York, 1994.
[28] S. Hu¨ ffner, Optical Spectra of Transparent Rare-Earth Compounds
(Academic, New York, 1978.
[29] P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and Performance of an Erbium-Doped Silicon Waveguide Detector Operating at 1.5 μm”, JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 20, NO. 5, May, 2002.
[30] Hak-Seung Han, Se-Young Seo, and Jung H. Shin, “Optical gain at 1.54 mm in erbium-doped silicon nanocluster sensitized waveguide”, Applied Physics letters, volume 79, number 27, 31, December, 2001.
[31] Condensed Matter and Materials Physics, National Research
Council, National Academ Press, Washington, D. C., 1999.
[32] C. R. Giles, D. Bishop, and V. Aksyuk, Mater. Res. Bull. 26, 328
, 2001.
[33] See, for example, Light emission from silicon: From Physics to
Devices, in Semiconductors and Semimetals, Vol. 49, Academic, San Diego, 1998.
[34] K. Petermann, “Properties off optical rib-guides with large cross-sec
tion,” Archiv fur Elektronik und Uberetragungstechnik, vol. 30, pp. 139-140, 1976.
[35] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 834~836,
[36] P. G. Kik, “Design and Performance of an Erbium-Doped Silicon
Waveguide Detector Operating at 1.5μm” Journal of LightWave Technology, vol. 20, NO. 5, May, 2002.
[37] S. Hufner, “Optical Spectra of Transparent Rare-Earth Compounds”,
Academic Press, New York, 1978.
[38] Jacob L. Philipsen, “Erbium-Doped Waveguide Amplifier (EDWA)
Technology and Components” NKT Integration A/S, Blokken 84, DK- 3460 Birkerød, Denmark,
[39] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
1500nm,” J. LightWave Technol. 9, 234-250, 1991.
[40] E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and
Applications, Wiley, New York, 1994.
[41] Albert Polman, “Broadband sensitizers for erbium-doped planar
optical amplifiers: review”, vol. 21, NO. 5/May 2004/J. Opt. Soc. Am. B.
[42] J. A. Besley, J. D. Love, and W. Langer, “A multimode planar power
splitter,” J. Lightwave Technol. 16(4), 678-684, 1998.
[43] J. Leuthold and C. H. Joyner, “Multimode Interference couplers with
tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700-707
, 2001.
[44] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 838~839.
[45] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto ,pp. 841~846.
[46] A. Yariv, Optical Electronics, 4th ed., Saunders, Philadelphia, PA,
1991.
[47] E. Desurvire, Erbium-Doped fiber amplifiers: Principles and
Applications, Wiley, New York, 1994.
[48] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
1500nm,” J. Lightwave Technol. 9(2), 234-250, 1991.
[49] Hak-Sheng Han, “Coefficient determination related to optical gain in
erbium-doped silicon-rich silicon oxide waveguide amplifier”,Applied physics Lett, vol 81, NUM 20.
[50] W. J. Miniscalco, J. LightWave Technol. 9,234, 1991.
[51] P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, IEEE Photonics
Technol. Lett. 3, 996, 1991.
[52] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 846~847.
[53] A. E. Siegman, Lasers, University Science Books, Mill Valley, CA,
1986.
[54] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 848~849.
[55] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 849~850, 2002.
[56] K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, “Trunk and
distribution network application of erbium-doped fiber amplifier,” J.
Lightwave Technol. 9(2), 198-208, 1991.
[57] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 852~853, 2002.
[58] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
1550nm,” J. Lightwave Technol. 9(2), 234-250, 1991.
[59] Keigo Lizuka, “Element of Photonics volume II for fiber and
integrated optics” University of Toronto, pp. 853~856, 2002.
[60] “OptiSystem_Getting_Started”, pp.4
[61] E. Modiano, “Traffic grooming in WDM networks,” IEEE
Communications Magazine, vol.39, pp. 124-129, July 1991.
[62] M. Zirngibl, C. Gragone, and C. H. Joyner, “Demonstration of a
15x15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett., vol.4, pp.1250-1253, Nov. 1992
[63] Y. Hida, T. Inoue, and S. Imamura, “Polymeric arrayed-waveguidegrating multiplexer operating around 1.3mm,” Electron. Lett., vol. 30, pp. 959-960 1994.
[64] P.D. Trink et.al, “Silicon-on-insulator (SOI) phased-arrayed wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE photonics Technology Letters, vol. 9, pp. 940-942, 1997.
[65] K. Takada, M. Abe, Y. Hida, T. Shibata, M. Ishii, A. Himeno K.
Okamoto, “Fabrication of 2 GHz-spaced 16-channel arrayed-waveguide grating demultiplexer for optical frequency monitoring applications”, Electroni. Lett., vol.36, pp. 1643-1644, Sept. 2000
[66] H. Toda, T. Yamashita, T. Kuri, K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM
millimeter-wave radio-on-fiber systems”, Lightwave Technol., vol. 21, pp. 1735-1741, Aug. 2003.
[67] S. Mysore, R. Villa, G. Beveridge, “Performance of broadband
DWDM networks”, Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, 2000. Digest of the LEOS Summer Topical Meeting , pp. IV23- IV24, July 2000.
[68] A. Kaneko, “Recent Progress on arrayed-waveguide grating for
WDM applications”, Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 Digest if the LEOS Summer Topical Meeting, pp. II29
[69] M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni and Y.
Shibata “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to -20dB crosstalk,” Electron. Lett., vol. 33, pp. 1786-1787, 1997.
[70] B. Buchold and E. voges, “ Polarization insensitive
arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass,” IEEE J. Select. Topics Quantum Electron, vol. 7, pp. 806-811, 2001.
[71] H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt.
Express, vol. 6, pp. 124, Mar.2000.
[72] M. Smit, “New focusing and dispersive planar component based on
an optical phased array,” Electron. Lett., vol. 24, pp.385-386, Mar.
1988.
[73] S. Toyoda, A. Kaneko, N. Ooba, H. Yamada, T. Kurihara, K.
Okamoto, S. Imamura, “Polarization-independent low-crosstalk polymeric AWG-based tunable filter operating around 1.55μm,” IEEE photon. Technol. Lett., vol. 11, no.9, p.p. 1141-1143, Sept.1999
[74] OptiWave BPM CAD, Waveguide Optics Modeling Software
System-OptiWave Corporation.
[75] M. G. Thompson, D. Brady, S. W. Roberts, “Chromatic dispersion
and bandshape improvement of SOI flatband AWG multi/demultiplexers by phase-error correction”, IEEE Photon. Technol. Lett., vol. 15, pp. 924-926, July 2003.
[76] A. Sakai, G. Hara, T. Baba, “Large effective index and low bend loss
in SOI optical waveguides”, The 4th Pacific Rim Conference on Lasers and Electro-Optics, 2001. CLEO/Pacific Rim 2001, vol. 1, pp. I-4 –I-5, July 2001.
[77] U. Fisher, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, ”0.1
dB/cm waveguide losses in singlemode SOI rib waveguides,” Phot. Techn. Lett., vol. 8, 647, 1996.
[78] S. S. Wangner and H. L. Lemberg, “Technology and system issues
for WDM-based fiber loop architecture”, IEEE Journal of Lightwave Technology, vol. 7, pp. 1759-1768, 1989.
[79] J. L. Philipsen et al, Proc., OAA 2000. OTuD2.
[80] Product information on the web-sites: www.nktintegration.com,
www.teemphotonics.com, and www.inplane.com.
[81] “Reference document for compact amplifier array”, MSA document
by NKT Integration and Teem Photonics. February 2003.
[82] MAX Ming-Kang Liu, “Principles and applications of optical
communications”, pp. 880~882, 1996.
[83] N. A. Olsson, “Light Wave Systems with Optical Amplifiers,”
Journal of Light Wave Technology, vol. 7, no. 7, July 1989, pp. 1071-82.