簡易檢索 / 詳目顯示

研究生: 黃資淵
Huang Tz-Yuan
論文名稱: 鉺離子佈植波導之特性研究與應用
Study of the Unique Properties and Applications of Erbium Ion Implanted Waveguide
指導教授: 曹士林
Tsao, Shyh-Lin
彭保仁
Pong, Bao-Jen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 104
中文關鍵詞: 掺鉺波導光放大器離子植入法平面光波導透鏡光纖多模干涉脊狀波導
英文關鍵詞: Erbium doped waveguide, optical amplifier, ion implantation, planar optical waveguide, Lensed fiber, multi-mode interference waveguide
論文種類: 學術論文
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在單根掺鉺波導放大器(EDWA)中,我們研究單根波導之不同長度及不同激發雷射能量產生不同之淨增益,並讓該掺鉺波導在不同的長度範圍與數種激發雷射能量的比較下,分析其可產生最大增益之長度。我們也將其放入分波多工系統中分析其在不同的波長與激發能量之間的關係並整理增益與雜訊指數之平坦度。
    在2 x 2掺鉺多模干涉波導實驗方面,我們將一個2 × 2通道的多模干涉脊狀波導藉由離子植入法將鉺離子打入波導中,並以1550nm可調雷射、準直鏡、單模光纖與光頻譜儀建構成之對光系統去量測其信號之變化,並研究結合掺鉺平面光波導放大器與分波多工元件之可行性。

    In single erbium doped waveguide amplifier (EDWA), we research single waveguide of various lengths and pump power to produce different net gain and compare with different ranges of length and pump power to get the maximum gain at length. We also insert EDWA into WDM system to analyze the performance between various wavelengths and pump powers and analyze the flatness of gain and noise figure.
    In experiment of 2x2 Erbium doped MMI waveguide, we implanted the ion of erbium into the 2x2 Multimode Interference (MMI) waveguide by ion implantation, and with 1550nm tunable laser, collimater, single mode fiber and optical spectrum analyzer (OSA) is formed an alignment system to measure and examine the change of output signal, and we study the feasibility of combining erbium doped waveguide optical amplifier and WDM element.

    Contents Chinese Abstract…………………………………………………………i English Abstract………………………………...…………………….....ii Acknowledgment………………………………………………………..iii Contents ………………………………………….……….………..….…iv List of Figures ………………………………………………...…...…..vii List of Tables ……………………………………….….……….….…xiii Chapter 1 Introduction…………………………………......……1 Chapter 2 Study of Single Mode Rib Waveguide Based on SOI Substrate and Erbium Doped Waveguide Amplifier……..………………………..……8 2-1 Single Mode Rib Waveguid………………….. ………….…......………9 2-2 Basis of Optical Amplifier…….………………………...……………..10 2-3 Introduction of Technique of Erbium-doped Waveguide Amplifier…...14 2-3-1 Gain of Optical Planar waveguide Amplifier…………………...15 2-3-2 Rate Equation for the Three-Level Model of Er3+………………………..25 2-3-2-1 Normalized Steady-State Population Difference……….27 2-3-2-2 Gain of the Amplifier…………………………………...29 2-3-3 Advantage and Disadvantage between 1.48μm and 0.98μm Pump Light....................................................................................32 2-4 Simulation Results and Analysis of Erbium-Doped Waveguide Amplifier ………………………………………………………………………….36 2-5 Summary…………………...…………………………………..………38 Chapter 3 Performance Analysis of Applying Erbium-doped Waveguide Amplifier to a Dense Wavelength Division Multiplexer Network............................47 3-1 Introduction of the basics of Arrayed Waveguide Grating……………..47 3-2 Introduction of Integrated EDWA and AWG DEMUX………………...49 3-3 Noise from Optical Amplification……………………………………...52 3-4 Performance Analysis of the N x 1 MUX, Erbium-doped Waveguide Amplifier, and 1 x N DEMUX applying on DWDM optical network...56 3-4-1 Analysis of 8x1 MUX/1x8DEMUX and EDWA………………...57 3-4-2 Analysis of 16x1 MUX/1x16DEMUX and EDWA……………...58 3-4-3 Analysis of 32x1 MUX/1x32DEMUX and EDWA……………...59 3-4-4 Analysis of 64x1 MUX/1x64DEMUX and EDWA……………...61 3-5 Summary……………………………………………………………….62 Chapter 4 Experimental Results of Erbium Doped MMI Waveguide Based on SOI Substrate by Ion Implantation……………………………………...71 4-1 Introduction of UNIBOND SOI Wafer with “Smart-Cut Process”………………………………………..………………72 4-2 Introduction of Ion Implantation…………………………….…………74 4-3 Experimental Results of Erbium Doped MMI Waveguide Amplifier…78 4-4 Summary…………..……………………….…………………………..80 Chapter 5 Conclusions…………..……………………………...93 References..…………………...…………………………………96 Publication Lists.…………….….………………….….…….....xiv List of Figures Fig. 1-1 An example of a silicon based optical integrated circuit in which a 1x4 splitter is combined with an amplifying section………………6 Fig. 1-2 Energy level diagram of Er3+……………………………...……6 Fig. 2-1 Structure of single mode Silicon on Insulator rib waveguide of Arrayed Waveguide Grating………………….…...………..39 Fig. 2-2 Mode pattern of the single rib waveguide………….........….…....39 Fig. 2-3 Principle of a three-level amplifier…………………….....….40 Fig. 2-4 Transitions between two energy levels. (a) Spontaneous emission (b) Stimulated emission (c)Stimulated absorpion….40 Fig. 2-5 Fictitious moving pill box in a waveguide amplifier…….….41 Fig. 2-6 Schematic structure of transmitted beam with single mode fiber into input single waveguide……………………….…………… .41 Fig. 2-7 Picture of equivalent of an optical amplifier………...…..42 Fig. 2-8 Three level model for Er3+ doped waveguide amplifier…...……42 Fig. 2-9 Population difference versus normalized pumping rate with signal power and β as parameters…………...….43 Fig. 2-10 Energy level diagram of Er3+............................………..……43 Fig. 2-11 Excited state absorption (ESA)…………………………….…...44 Fig. 2-12 Schematic diagram of single channel Erbium doped waveguide amplifier………………..………………………………………44 Fig. 2-13 Relationship of Gain and Pump power of different length waveguide amplifier from 0.02m to 0.1m………………...……45 Fig. 2-14 Relationship of Gain and Pump power of different length waveguide amplifier from 0.1m to 0.5m……………………...45 Fig. 2-15 Relationship of Noise figure and Pump power of different length waveguide amplifier from 0.1m to 0.5m…………...…………..46 Fig. 3-1 Schematic diagram of Wavelength Division Multiplexer (WDM) .......................................................................................................63 Fig. 3-2 Schematic view of integrated EDWA and AWG DEMUX………63 Fig. 3-3 Simulation results of Gain and Wavelength of 8x1 MUX, EDWA and 1x8 DEMUX……………………………...…………………64 Fig. 3-4 Simulation results of Noise figure and wavelength of 8x1 MUX, EDWA and 1x8 DEMUX……………………………...………...64 Fig. 3-5 Simulation results of Gain and Wavelength of 16x1 MUX, EDWA and 1x16 DEMUX………………………………………….........65 Fig. 3-6 Simulation results of Noise figure and wavelength of 16x1 MUX, EDWA and 1x16 DEMUX………………………………...…….65 Fig. 3-7 Simulation results of Gain and Wavelength of 32x1 MUX, EDWA and 1x32 DEMUX…...……………………………………......…66 Fig. 3-8 Simulation results of Noise figure and wavelength of 32x1 MUX, EDWA and 1x32 DEMUX………………………………….…...66 Fig. 3-9 The schematic diagram of the integrated 64x1 MUX, EDWA, and 1x64 DEMUX…………………………………………………67 Fig. 3-10 Simulation results of Gain and Wavelength of 64x1 MUX,EDWA And 1x64 DEMUX……..……………………………………….68 Fig. 3-11 Simulation results of Noise figure and wavelength of 64x1 MUX, EDWA and 1x64 DEMUX….…………………………………...68 Fig. 4-1 Method of UNIBOND SOI……………........................................82 Fig. 4-2 Procedure of ion implantation………………………...…..……...82 Fig. 4-3 Procedure of mass analyzer…………………………...…………83 Fig. 4-4 Procedure of Electrostatic Deflector…………………………......83 Fig. 4-5 Picture of the dose and the depth of Er3+ under the Silicon surface …………………………………………………………...84 Fig. 4-6 Input port and output port of Er3+ MMI by SEM…………….…..84 Fig. 4-7 Cross section of the SOI single mode rib waveguide by SEM .....85 Fig. 4-8 First experimental setups for measuring the output beam from the one channel of 2 output ports of MMI with source wavelength = 1550nm……………………………………………………..……86 Fig. 4-9 Second experimental setups for measuring the output beam from the one channel of 2 output ports of MMI with source wavelength = 1550nm………………………………………………….……87 Fig. 4-10 Picture of first experiment frame with measuring optical 2×2 MMI waveguide………………….….…………………………88 Fig. 4-11 Picture of second experiment frame with measuring optical 2×2 MMI waveguide……………………………………...………...88 Fig. 4-12 Output mode pattern of one channel of 2x2 MMI………..….....89 Fig. 4-13 980nm pump laser optical power: 0mW……..…………………89 Fig. 4-14 980nm pump laser optical power: 16mW………………………90 Fig. 4-15 980nm pump laser optical power: 21mW………………………90 Fig. 4-16 980nm pump laser optical power: 28mW………………………91 Fig. 4-17 980nm pump laser optical power: 34mW………………………91 Fig. 4-18 980nm pump laser optical power: 78mW………………………92 Fig. 4-19 Relationship between pump power and output power at 1549nm………………………………..………………….….....92 List of Tables Table I. Characteristics of Er doped planar optical waveguide amplifiers operating at 1.54μm that have been fabricated on silicon to date ………………………………………………………………7 Table II. Comparison of maximum gain and noise figure of four kinds of Nx1 MUX, 1xN DEMUX and Er3+ waveguide amplifier……………………………………………………...…69 Table III. Comparison of the flatness of gain and noise figure of four kinds of Nx1 MUX, 1xN DEMUX and Er3+ waveguide amplifier. ………………………………………………………………….70

    [1] G. N. van den Hoven, R. J. I. M. Koper, and A. Polman “Net optical gain at 1.53μm in Er-doped Al2O3 waveguide on silicon” Appl. Phys. Lett. 68 (14), 1 April 1996.
    [2] E. Desurvire, Phys. Today 47, 20, 1994.
    [3] G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong,
    IEEE Photonics Technol. Lett. 5, 1185 1993.
    [4] K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, Electron. Lett. 30, 856 1994.
    [5] M. Hempstead, J. E. Roma´n, C. C. Ye, J. S. Wilkinson, P. Camy, P.
    Laborde, and C. Lerminiaux, in Proceedings of the 7th European Conference on Integrated Optics, Delft, 3–6 April 1995 (unpublished), p. 233.
    [6] D. Barbier, P. Gastaldo, B. Hyde, J. M. Jouanno, and A. Kevorkian, in
    Proceedings of the 7th European Conference on Integrated Optics, Delft, 3–6 April 1995 (unpublished), p. 241.
    [7] P.G. Kik and A. Polman “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535μm”, Appl. Phys. Lett. 71 (20), 17 November 1997.
    [8] 1W. J. Miniscalco, J. Lightwave Technol. 9, 234, 1991.
    [9] P. Camy, J. E. Roman, F. W. Willems, M. Hempstead, J. C. van der
    Plaats, C. Prel, A. Beguin, A. M. J. Koonen, J. S. Wilkinson, and C.
    Lerminiaux, Electron. Lett. 32, 321, 1996.
    [10] J. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. S. Andre, and A. Kevorkian, Proceedings of ECOC’96, 1996, p. 123.
    [11] P.G. Kik and A. Polman “Erbium doped optical waveguide amplifiers
    on silicon” MRS Bulletin 23(4), 48, April 1998.
    [12] W. J. Miniscalco, J. Lightwave Technol. 9, 1991 p. 234
    [13] A. Polman, J. Appl. Phys. 82, 1997 p. 1
    [14] P. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, Electron. Lett. 23, 1987 p. 1026
    [15] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and
    Applications, John Wiley & Sons, 1994
    [16] G. N. van den Hoven, Er doped photonic materials on silicon, PhD
    thesis, University of Utrecht, 1996
    [17] Condensed Matter and Materials Physics National Research Council,
    National Academic, Washington, DC, 1999.
    [18] E. Desurvire, “The golden age of optical fiber amplifiers,” Phys.
    Today 47(1), 20–27, 1994.
    [19] B. J. Ainslie, “A review of the fabrication and properties of
    erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9,
    220–227, 1991.
    [20] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12, 888–890, 1987.
    [21] C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539, 1989.
    [22] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
    1550nm,” J. Lightwave Technol. 9, 234–250, 1991.
    [23] J. C. Wright, “Up-conversion and excited state energy transfer in
    rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed., Vol. 15 in Topics in Applied Physics (Springer, Heidelberg, 1976), pp. 238–295.
    [24] G. Nykolak, P. C. Becker, J. Shmulovich, Y. H. Wong, D. J. DiGiov-
    anni, and A. J. Bruce, “Concentration-dependent 4I13/2 lifetimes in Er+-doped fiber and Er+-doped planar waveguides,” IEEE Photon. Technol. Lett. 5, 1014–1016, 1993.
    [25] Albert Polman, Frank C. J. M. van Veggel*, “Broadband sensitizers
    for erbium-doped planar optical amplifiers: Review”, Optical Society of America, 2004.
    [26] W. J. Miniscalco, ‘‘Erbium-doped glasses for fiber amplifiers at 1500
    nm,’’ J. Lightwave Technol. 9, 234–250, 1991.
    [27] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and
    Applications, Wiley, New York, 1994.
    [28] S. Hu¨ ffner, Optical Spectra of Transparent Rare-Earth Compounds
    (Academic, New York, 1978.
    [29] P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and Performance of an Erbium-Doped Silicon Waveguide Detector Operating at 1.5 μm”, JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 20, NO. 5, May, 2002.
    [30] Hak-Seung Han, Se-Young Seo, and Jung H. Shin, “Optical gain at 1.54 mm in erbium-doped silicon nanocluster sensitized waveguide”, Applied Physics letters, volume 79, number 27, 31, December, 2001.
    [31] Condensed Matter and Materials Physics, National Research
    Council, National Academ Press, Washington, D. C., 1999.
    [32] C. R. Giles, D. Bishop, and V. Aksyuk, Mater. Res. Bull. 26, 328
    , 2001.
    [33] See, for example, Light emission from silicon: From Physics to
    Devices, in Semiconductors and Semimetals, Vol. 49, Academic, San Diego, 1998.
    [34] K. Petermann, “Properties off optical rib-guides with large cross-sec
    tion,” Archiv fur Elektronik und Uberetragungstechnik, vol. 30, pp. 139-140, 1976.
    [35] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 834~836,
    [36] P. G. Kik, “Design and Performance of an Erbium-Doped Silicon
    Waveguide Detector Operating at 1.5μm” Journal of LightWave Technology, vol. 20, NO. 5, May, 2002.
    [37] S. Hufner, “Optical Spectra of Transparent Rare-Earth Compounds”,
    Academic Press, New York, 1978.
    [38] Jacob L. Philipsen, “Erbium-Doped Waveguide Amplifier (EDWA)
    Technology and Components” NKT Integration A/S, Blokken 84, DK- 3460 Birkerød, Denmark,
    [39] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
    1500nm,” J. LightWave Technol. 9, 234-250, 1991.
    [40] E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and
    Applications, Wiley, New York, 1994.
    [41] Albert Polman, “Broadband sensitizers for erbium-doped planar
    optical amplifiers: review”, vol. 21, NO. 5/May 2004/J. Opt. Soc. Am. B.
    [42] J. A. Besley, J. D. Love, and W. Langer, “A multimode planar power
    splitter,” J. Lightwave Technol. 16(4), 678-684, 1998.
    [43] J. Leuthold and C. H. Joyner, “Multimode Interference couplers with
    tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700-707
    , 2001.
    [44] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 838~839.
    [45] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto ,pp. 841~846.
    [46] A. Yariv, Optical Electronics, 4th ed., Saunders, Philadelphia, PA,
    1991.
    [47] E. Desurvire, Erbium-Doped fiber amplifiers: Principles and
    Applications, Wiley, New York, 1994.
    [48] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
    1500nm,” J. Lightwave Technol. 9(2), 234-250, 1991.
    [49] Hak-Sheng Han, “Coefficient determination related to optical gain in
    erbium-doped silicon-rich silicon oxide waveguide amplifier”,Applied physics Lett, vol 81, NUM 20.
    [50] W. J. Miniscalco, J. LightWave Technol. 9,234, 1991.
    [51] P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, IEEE Photonics
    Technol. Lett. 3, 996, 1991.
    [52] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 846~847.
    [53] A. E. Siegman, Lasers, University Science Books, Mill Valley, CA,
    1986.
    [54] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 848~849.
    [55] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 849~850, 2002.
    [56] K. Nakagawa, S. Nishi, K. Aida, and E. Yoneda, “Trunk and
    distribution network application of erbium-doped fiber amplifier,” J.
    Lightwave Technol. 9(2), 198-208, 1991.
    [57] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 852~853, 2002.
    [58] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at
    1550nm,” J. Lightwave Technol. 9(2), 234-250, 1991.
    [59] Keigo Lizuka, “Element of Photonics volume II for fiber and
    integrated optics” University of Toronto, pp. 853~856, 2002.
    [60] “OptiSystem_Getting_Started”, pp.4
    [61] E. Modiano, “Traffic grooming in WDM networks,” IEEE
    Communications Magazine, vol.39, pp. 124-129, July 1991.
    [62] M. Zirngibl, C. Gragone, and C. H. Joyner, “Demonstration of a
    15x15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett., vol.4, pp.1250-1253, Nov. 1992
    [63] Y. Hida, T. Inoue, and S. Imamura, “Polymeric arrayed-waveguidegrating multiplexer operating around 1.3mm,” Electron. Lett., vol. 30, pp. 959-960 1994.
    [64] P.D. Trink et.al, “Silicon-on-insulator (SOI) phased-arrayed wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE photonics Technology Letters, vol. 9, pp. 940-942, 1997.
    [65] K. Takada, M. Abe, Y. Hida, T. Shibata, M. Ishii, A. Himeno K.
    Okamoto, “Fabrication of 2 GHz-spaced 16-channel arrayed-waveguide grating demultiplexer for optical frequency monitoring applications”, Electroni. Lett., vol.36, pp. 1643-1644, Sept. 2000
    [66] H. Toda, T. Yamashita, T. Kuri, K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM
    millimeter-wave radio-on-fiber systems”, Lightwave Technol., vol. 21, pp. 1735-1741, Aug. 2003.
    [67] S. Mysore, R. Villa, G. Beveridge, “Performance of broadband
    DWDM networks”, Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, 2000. Digest of the LEOS Summer Topical Meeting , pp. IV23- IV24, July 2000.
    [68] A. Kaneko, “Recent Progress on arrayed-waveguide grating for
    WDM applications”, Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 Digest if the LEOS Summer Topical Meeting, pp. II29
    [69] M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni and Y.
    Shibata “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to -20dB crosstalk,” Electron. Lett., vol. 33, pp. 1786-1787, 1997.
    [70] B. Buchold and E. voges, “ Polarization insensitive
    arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass,” IEEE J. Select. Topics Quantum Electron, vol. 7, pp. 806-811, 2001.
    [71] H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt.
    Express, vol. 6, pp. 124, Mar.2000.
    [72] M. Smit, “New focusing and dispersive planar component based on
    an optical phased array,” Electron. Lett., vol. 24, pp.385-386, Mar.
    1988.
    [73] S. Toyoda, A. Kaneko, N. Ooba, H. Yamada, T. Kurihara, K.
    Okamoto, S. Imamura, “Polarization-independent low-crosstalk polymeric AWG-based tunable filter operating around 1.55μm,” IEEE photon. Technol. Lett., vol. 11, no.9, p.p. 1141-1143, Sept.1999
    [74] OptiWave BPM CAD, Waveguide Optics Modeling Software
    System-OptiWave Corporation.
    [75] M. G. Thompson, D. Brady, S. W. Roberts, “Chromatic dispersion
    and bandshape improvement of SOI flatband AWG multi/demultiplexers by phase-error correction”, IEEE Photon. Technol. Lett., vol. 15, pp. 924-926, July 2003.
    [76] A. Sakai, G. Hara, T. Baba, “Large effective index and low bend loss
    in SOI optical waveguides”, The 4th Pacific Rim Conference on Lasers and Electro-Optics, 2001. CLEO/Pacific Rim 2001, vol. 1, pp. I-4 –I-5, July 2001.
    [77] U. Fisher, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, ”0.1
    dB/cm waveguide losses in singlemode SOI rib waveguides,” Phot. Techn. Lett., vol. 8, 647, 1996.
    [78] S. S. Wangner and H. L. Lemberg, “Technology and system issues
    for WDM-based fiber loop architecture”, IEEE Journal of Lightwave Technology, vol. 7, pp. 1759-1768, 1989.
    [79] J. L. Philipsen et al, Proc., OAA 2000. OTuD2.
    [80] Product information on the web-sites: www.nktintegration.com,
    www.teemphotonics.com, and www.inplane.com.
    [81] “Reference document for compact amplifier array”, MSA document
    by NKT Integration and Teem Photonics. February 2003.
    [82] MAX Ming-Kang Liu, “Principles and applications of optical
    communications”, pp. 880~882, 1996.
    [83] N. A. Olsson, “Light Wave Systems with Optical Amplifiers,”
    Journal of Light Wave Technology, vol. 7, no. 7, July 1989, pp. 1071-82.

    QR CODE