研究生: |
劉益興 Yi-Shing, Liou |
---|---|
論文名稱: |
高空平台系統CDMA語音通話與位元錯誤之分析 Analysis of Voice Capacity and BER for HAPS CDMA Systems |
指導教授: |
黃政吉
Huang, Jeng-Ji |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 高空平台 、分碼多重存取 、上鏈 、下鏈 、最佳化理論 |
英文關鍵詞: | High altitude platform stations (HAPSs), code division multiple access (CDMA), uplink, downlink, optimization theory |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
HAPS(High Altitude Platform Station)為一運作在高公21公里處的高空平台,主要用於傳送寬頻應用,以及分碼多重存取 (code division multiple access,CDMA)為基礎的國際行動通訊系統-2000(IMT-2000)無線通訊,其頻帶分別為毫米波段和第三代行動通訊(3G)頻帶。本論首先主要研究在於HAPS系統的不穩定造成細胞在下鏈與上鏈容量的改變,提出兩種天線型式探討HAPS系統位移時對CDMA細胞系統的上鏈與下鏈容量的影響和細胞服務範圍受改變的大小,並且在下鏈部份應用碼的正交因子來說明對容量的改變。而後第二部份利用波束在地面的真實投影計算每個細胞主波束的投射位置,建構出無縫隙系統,並以最佳化理論計算各個細胞最佳的容量,比較最佳化前後的系統容量差異。最後一部份以多架HAPS系統擴大服務範圍,利用兩種通道模型simplified通道模型與Rice-lognormal通道模型計算細胞各層的容量,並且分析比較兩種通道模型所得結果之差異。
High altitude platform stations (HAPSs) operate at an altitude of about 21 km. They are widely known as a new means to provide both broadband applications and code division multiple access (CDMA)-based international mobile telecommunications-2000 (IMT-2000) communications using millimeter wave and third generation (3G) bands, respectively. In this thesis, we firstly consider the impact of platform displacement on both the uplink and downlink capacity and the cell deployment movement under two types of antennas. The orthogonality factor is applied in the calculation of the downlink capacity. Secondly, we build up a seamless HAPS system model under real beam projection on the ground. The cell capacity is then calculated using optimization theory. Finally, multiple-HAPS systems are used to enlarge service area. Two kinds of channel models are taken into consideration: a simplified channel model and a Rice-lognormal channel model. The uplink capacity is compared and analyzed under these two kinds of channel model.
[1] T. C. Tozer and D. Grace, “High-altitude platforms
for wireless communications,” Electronics &
Communication Engineering Journal, vol.13, no. 3,
pp. 127 – 137, June 2001.
[2] Dimitrios I. Axiotis, Michael E. Theologou and
Efstathios D. Sykas, “The effect of platform
instability on the system level performance of HAPS
UMTS,” IEEE Communications Letters, vol. 8, no. 2,
pp.111 – 113, Feb. 2004,
[3] Y. C. Foo, W. L. Lim, R. Tafazolli, and L.
Barclay, “Other-cell interference and reverse link
capacity of high altitude platform station CDMA
system,” Electron. Lett., vol. 36, no. 22, pp.
1881 – 1882, 26 Oct. 2000.
[4] Y. C. Foo, W. L. Lim, R. Tafazolli, and L.
Barclay, “Forward Link Power Control for High
Altitude Platform Station W-CDMA System,” IEEE VTC,
vol. 2, Oct. 2001, pp. 625 – 629.
[5] El-Jabu, B and Steele, R, “Cellular communications
using aerial platforms,” IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY, vol. 50, no. 3, May, 2001, pp.
686 – 700.
[6] J.-J. Huang et al., “The Impact of Using Multiple
HAPSs to Combat Platform Instability on Uplink CDMA
Capacity,” IEEE VTC, Apr. 2007, pp. 1365 - 1369
[7] Jeng-Ji Huang, Zong-Jhe Wu and Wei-Ting
Wang, “Designs of microcell for an integrated HAPS-
terrestrial CDMA system,” IEEE PIMRC, Sept. 2008
pp. 1 - 5
[8] Tae Chul Hong, Bon-Jun Ku, Jong-Min Park and Do-Seob
Ahn, “Reverse link capacity of the WCDMA system
using high altitude platform stations,” IEEE WCNC,
vol.1, Mar. 2005, pp. 195 – 200
[9] J.-H. Lee, “Capacity increase of a CDMA cellular
system by using directional antennas on mobile
stations,” IEEE 42nd Vehicular Technology
Conference, vol. 2, 10-13 May 1992, pp.993-996.
[10] ITU-R, “Technical and operational characteristics
for the fixed service using high altitude platform
stations in the bands 27.5-28.35 GHz and 31-31.3
GHz, ” ITU-R Recommendation F.1569.
[11] B. T. Ahmed et al., “Quasi-Optimal Downlink Power
Control of High Altitude Platform W-CDMA System,”
IEEE VTC, vol. 4, Apr. 2003, pp. 2476–2479
[12] E. Falletti, M. Laddomada, M. Mondin, F. Sellone,
and P. Torino, “Integrated Services from High-
Altitude Platforms: A Flexible Communication
System,” IEEE Commun. Mag., vol. 44, no. 2, Feb.
2006, pp. 85-94.
[13] H. Fu, G. Bi, and K. Arichandran, “Effect of
Multiple Access Interference on Performance of Multi-
Beam CDMA-Based LEO Satellite Systems,” Electron.
Lett., vol. 34, no. 2, pp. 149–150, Jan. 1998.
[14] JAMES S. LEHNERT and MICHAEL B. PURSLEY, “Error
Probabilities for Binary Direct-Sequence Spread-
Spectrum Communications with Random Signature
Sequences,” IEEE TRANSATION ON COMMUNICATIONS, vol.
35, no. 1, Jan. 1987, pp. 87- 98.
[15] ROBERT K. MORROW, JR. and JAMESS. LEHNERT, “Bit-to-
bit error dependence in slotted DS/SSMA packet
systems withrandom signature sequences,” IEEE
TRANSATION ON COMMUNICATIONS, vol. 37, no. 10, Oct.
1989, pp. 1052–1061.