研究生: |
江姝嫺 Chiang, Shu-Hsien |
---|---|
論文名稱: |
人工智慧面試透明度對應徵者印象管理的影響:以錄影面試為情境 The impact of artificial intelligence transparency on interviewees’ impression management in asynchronous video interviews |
指導教授: |
孫弘岳
Suen, Hung-Yue |
口試委員: |
陳建丞
Chen, Chien-Cheng 陳怡靜 Chen, Yi-Ching 孫弘岳 Suen, Hung-Yue |
口試日期: | 2022/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 人工智慧 、人機互動 、非同步錄影面試 、透明度 、印象管理 |
英文關鍵詞: | Artificial Intelligence (AI), Human-Computer Interaction (HCI), Asynchronous Video Interviews (AVIs), Transparency, Impression Management (IM) |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201303 |
論文種類: | 學術論文 |
相關次數: | 點閱:122 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑒於疫情的影響下,越來越多的企業在人才甄選的過程中使用具 備人工智慧的非同步錄影面試,為提升面試好感度與成功錄取工作的機 會,應徵者通常都會非常努力地運用印象管理技巧,以展現出最好的形 象,這些行為展現包括誠實性和欺騙性的印象管理策略。誠實性的 IM 將 可能提高甄選的效度,但欺騙性的 IM 可能會降低選才效度,甚至僱用 到不對的人選。
本研究透過邀請年齡範圍在 18-60 歲之間,且具有實際全職或兼職 需求的 73 位應徵者參加非同步錄影面試,其中的 32 位透過具備透明度 的 AI 介面下進行錄影面試,另外的 41 位則透過不具備透明度的 AI 介 面下進行錄影面試;當面試完成後,所邀請的 73 位應徵者皆要求其再完 成印象管理量表問卷。
本研究計畫透過實驗設計,來了解應徵者對於在參與具備透明度的 AI 介面相對於沒有透明度的 AI 介面,在錄影面試的情境中之行為展現; 根據研究結果顯示,應徵者對於在參與具備透明度的 AI 介面相對於沒 有透明度的 AI 介面,在錄影面試的情境中,會降低應徵者誠實性自我 推銷與自我辯護之印象管理行為;且會提升避重就輕等欺騙的印象管理, 對於誇大不實則無有統計顯著的影響。
In view of the impact of the epidemic, more and more companies are using Asynchronous Video Interviews (AVIs) with artificial intelligence (AI) in the talent selection process. The purpose of this study is to explore the situation of candidates who actually use asynchronous video interviews. Whether the AI interface will affect the display of the applicant's impression management behavior.
In this study, 73 applicants with actual full-time or part-time needs, aged between 18-60, were invited to participate in asynchronous video interviews. Among them, 32 were video-recorded through a transparent AI interface, and the other 41 were interviewed with non-transparent AI interface; when the interviews were completed, the 73 invited candidates were asked to complete the Impression Management Scale questionnaire.
This research plan uses an experimental design to understand the behavior of candidates participating in an AI interface with transparency versus an AI interface without transparency in the context of video interviews; Compared with the non-transparent AI interface, in the context of video interviews, the applicant's impression management behavior of Self- promotion and Self-defense will be reduced; and it will improve the impression management of Image protection, and it will not be effective for Extensive image creation.
一、中文部分
錢國倫、陳怡靜、陳建丞(2013)。工作與組織特性與求職者人格特質之交互作用對組織人才吸引力的影響。 人力資源管理學報,13(1),1-32。https://doi.org/10.6147/JHRM.2013.1301.01
二、英文部分
Ashton, M. C., & Lee, K. (2009). The HEXACO–60: A Short Measure of the Major Dimensions of Personality. Journal of Personality Assessment, 91(4), 340-345. https://doi.org/10.1080/00223890902935878
Barrick, M. R., Shaffer, J. A., & DeGrassi, S. W. (2009). What you see may not be what you get: Relationships among self-presentation tactics and ratings of interview and job performance. Journal of Applied Psychology, 94(6),13941411. https://doi.org/10.1037/a0016532
Booth-Kewley, S., Edwards, J. E., & Rosenfeld, P. (1992). Impression management, social desirability, and computer administration of attitude questionnaires: Does the computer make a difference?. Journal of Applied Psychology, 77(4), 562.
https://doi.org/10.1037/0021-9010.77.4.562
Bourdage, J. S., Roulin, N., & Levashina, J. (2017). Impression management and faking in job interviews. Frontiers in psychology, 8, 1294.
https://doi.org/10.3389/fpsyg.2017.01294
Bourdage, J. S., Roulin, N., & Tarraf, R. (2018). “I (might be) just that good”: Honest and deceptive impression management in employment interviews. Personnel Psychology, 71(4), 597-632.
https://doi.org/https://doi.org/10.1111/peps.12285
Buehl, A. K., & Melchers, K. G. (2017). Individual difference variables and the occurrence and effectiveness of faking behavior in interviews. Frontiers in Psychology, 8, 686.
https://doi.org/10.3389/fpsyg.2017.00686
Charalambous, G., Fletcher, S., & Webb, P. (2016). The development of a scale to evaluate trust in industrial human-robot collaboration. International Journal of Social Robotics, 8(2), 193-209.
https://doi.org/10.1007/s12369-015-0333-8
Chao, G. L., Rastogi, A., Yavuz, S., Hakkani-Tür, D., Chen, J., & Lane, I. (2019). Learning question-guided video representation for multi-turn video question answering. arXiv preprint arXiv:1907.13280.
https://doi.org/10.18653/v1/W19-5926
Cronbach, L. J. (1951) . Coefficient alpha and the internal structure of tests. Psychometrika, 16 (3) , 297-334. https://doi.org/10.1007/BF02310555
Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006). The mini-IPIP scales: tiny-yet-effective measures of the Big Five factors of personality. Psychological assessment, 18(2), 192.
https://doi.org/10.1037/1040-3590.18.2.192
Du, S., Tao, Y., & Martinez, A. M. (2014). Compound facial expressions of emotion. Proceedings of the National Academy of Sciences, 111(15), E1454-E1462. https://doi.org/10.1073/pnas.1322355111
Ellis, A. P. J., West, B. J., Ryan, A. M., & DeShon, R. P. (2002). The use of impression management tactics in structured interviews: A function of question type? Journal of Applied Psychology, 87(6), 1200–1208.
https://doi.org/10.1037/0021-9010.87.6.1200
Ekman, P., & Friesen, W. V. (1969). The repertoire of nonverbal behavior: Categories, origins, usage, and coding. Nonverbal communication, interaction, and gesture, 57-106. https://doi.org/10.1515/9783110880021.57
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660.https://doi.org/10.5465/annals.2018.0057
Gerich, J. (2012). Video-enhanced self-administered computer interviews. In Online research methods in urban and planning studies: Design and outcomes (pp. 99-119). IGI Global.
https://doi.org/10.4018/978-1-4666-0074-4.ch007
Gorman, C. A., Robinson, J., & Gamble, J. S. (2018). An investigation into the validity of asynchronous web-based video employment-interview ratings. Consulting Psychology Journal: Practice and Research, 70(2), 129. https://doi.org/10.1037/cpb0000102
Hosanagar, K., & Jair, V. (2018). We need transparency in algorithms, but too much can backfire. Harvard Business Review, 25, 2018.
https://hbr.org/2018/07/we-need-transparency-in-algorithms-but-too-much-can-backfire
Haan, M., Ongena, Y. P., Vannieuwenhuyze, J. T., & De Glopper, K. (2017). Response behavior in a video-web survey: A mode comparison study. Journal of Survey Statistics and Methodology, 5(1), 48-69.
https://doi.org/10.1093/jssam/smw023
Haubitz, C. B., Lehmann, C. A., Fügener, A., & Thonemann, U. (2021). The risk of algorithm transparency: How algorithm complexity drives the effects on use of advice (No. 078). ECONtribute Discussion Paper.
http://hdl.handle.net/10419/237323
Ho, J. L., Powell, D. M., Barclay, P., & Gill, H. (2019). The influence of competition on motivation to fake in employment interviews. Journal of Personnel Psychology, 95-105. https://doi.org/10.1027/1866-5888/a000222
Hood, C. (2006). Transparency in historical perspective. In C. Hood, & D. Heald (Eds.), Transparency: The Key to Better Governance? (pp. 3–23). Oxford University Press.
https://doi.org/10.5871/bacad/9780197263839.003.0001
Holtgraves, T. (2004). Social desirability and self-reports: Testing models of socially desirable responding. Personality and Social Psychology Bulletin, 30(2), 161-172.
https://doi.org/10.1177/0146167203259930
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399.
https://doi.org/10.1038/s42256-019-0088-2
Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.
Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human factors, 57(3), 407-434. https://doi.org/10.1177/0018720814547570
Melchers, K. G., Klehe, U. C., Richter, G. M., Kleinmann, M., König, C. J., & Lievens, F. (2009). “I know what you want to know”: The impact of interviewees' ability to identify criteria on interview performance and construct-related validity. Human Performance, 22(4), 355-374.
https://doi.org/10.1080/08959280903120295
Law, S. J., Bourdage, J., & O’Neill, T. A. (2016). To fake or not to fake: Antecedents to interview faking, warning instructions, and its impact on applicant reactions. Frontiers in psychology, 7, 1771.
https://doi.org/10.3389/fpsyg.2016.01771
Larsson, S., & Heintz, F. (2020). Transparency in artificial intelligence. Internet Policy Review, 9(2), 1-16.
https://doi.org/10.14763/2020.2.1469
Levashina, J., & Campion, M. A. (2007). Measuring faking in the employment interview: development and validation of an interview faking behavior scale. Journal of applied psychology, 92(6), 1638.
https://doi.org/10.1037/0021-9010.92.6.1638
Liem, C. C., Langer, M., Demetriou, A., Hiemstra, A. M., Wicaksana, A. S., Born, M. P., & König, C. J. (2018). Psychology meets machine learning: Interdisciplinary perspectives on algorithmic job candidate screening. In Explainable and interpretable models in computer vision and machine learning (pp. 197-253). Springer.
https://doi.org/10.1007/978-3-319-98131-4_9
Langer, M., König, C., & Hemsing, V. (2020). Is anybody listening? The impact of automatically evaluated job interviews on impression management and applicant reactions. Journal of Managerial Psychology, 35, 271–284. http://dx.doi.org/10.22028/D291-31302
Levashina, J., & Campion, M. A. (2007). Measuring faking in the employment interview: development and validation of an interview faking behavior scale. Journal of Applied Psychology, 92(6), 1638.
https://doi.org/10.1037/0021-9010.92.6.1638
Lipton, Z. C. (2018). The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57. https://doi.org/10.1145/3233231
Long, N. (2003). Development sociology: actor perspectives. Routledge.
https://doi.org/10.1111/j.1467-923X.2011.02253.x
McCarthy, J., & Goffin, R. (2004). Measuring job interview anxiety: Beyond weak knees and sweaty palms. Personnel Psychology, 57(3), 607-637.
https://doi.org/10.1111/j.1744-6570.2004.00002.x
McCarthy, J., Hrabluik, C., & Jelley, R. B. (2009). Progression through the ranks: Assessing employee reactions to high‐stakes employment testing. Personnel Psychology, 62(4), 793-832.
https://doi.org/10.1111/j.1744-6570.2009.01158.x
McCarthy, J. M., & Cheng, B. H. (2018). Through the looking glass: Employment interviews from the lens of job candidates. In The Oxford handbook of job loss and job search (pp. 329). Oxford University.
Mejia, C., & Torres, E. N. (2018). Implementation and normalization process of asynchronous video interviewing practices in the hospitality industry. International Journal of Contemporary Hospitality Management, 30(2), 685-701. https://doi.org/10.1108/ijchm-07-2016-0402
Miller, T. (2019) Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38.
https://doi.org/10.1016/j.artint.2018.07.007
Mittelstadt, B., Russell, C., & Wachter, S. (2019, January). Explaining explanations in AI. In Proceedings of the conference on fairness, accountability, and transparency (pp. 279-288). New York.
https://doi.org/10.1145/3287560.3287574
Nunnally, J. C. (1978). An overview of psychological measurement. In Clinical Diagnosis of Mental Disorders, 97-146. https://doi.org/https://doi.org/10.1007/978-1-4684-2490-4_4
Oana, O., Cosmin, T., & Valentin, N. C. (2017). Artificial intelligence-A new field of computer science which any business should consider. Ovidius University Annals, Economic Sciences Series, 17(1), 356-360.
Ötting, S. K., & Maier, G. W. (2018). The importance of procedural justice in human–machine interactions: Intelligent systems as new decision agents in organizations. Computers in Human Behavior, 89, 27-39.
https://doi.org/10.1016/j.chb.2018.07.022
Pulakos, E. D. (2005). Selection assessment methods. Alexandria, VA: SHRM Foundation.
https://www.shrm.org/hr-today/trends-and-forecasting/special-reports-and-expert-views/documents/selection-assessment-methods.pdf
Park, H., Ahn, D., Hosanagar, K., & Lee, J. (2021, May). Human-AI Interaction in Human Resource Management: Understanding Why Employees Resist Algorithmic Evaluation at Workplaces and How to Mitigate Burdens. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-15). New York.
https://doi.org/10.1145/3411764.3445304
Porter, S., & Ten Brinke, L. (2008). Reading between the lies: Identifying concealed and falsified emotions in universal facial expressions. Psychological science, 19(5), 508-514. https://doi.org/10.1111/j.1467-9280.2008.02116.x
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). New York.
https://doi.org/10.1145/2939672.2939778
Roulin, N., Bangerter, A., & Levashina, J. (2015). Honest and deceptive impression management in the employment interview: Can it be detected and how does it impact evaluations? Personnel Psychology, 68(2), 395-444. https://doi.org/10.1111/peps.12079
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215.
https://doi.org/10.1038/s42256-019-0048-x
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, (pp. 1135–1144). New York.
https://doi.org/10.1145/2939672.2939778
Stöber, J., Dette, D. E., & Musch, J. (2002). Comparing continuous and dichotomous scoring of the Balanced Inventory of Desirable Responding. Journal of personality assessment, 78(2), 370-389.
https://doi.org/10.1207/s15327752jpa7802_10
Stevens, C. K., & Kristof, A. L. (1995). Making the right impression: A field study of applicant impression management during job interviews. Journal of Applied Psychology, 80(5), 587–606.
https://doi.org/10.1037/0021-9010.80.5.587
Stöber, J., Dette, D. E., & Musch, J. (2002). Comparing continuous and dichotomous scoring of the balanced inventory of desirable responding. J Pers Assess, 78(2), 370-389.
https://doi.org/10.1207/s15327752jpa7802_10
Suen, H.-Y., Chen, M. Y.-C., & Lu, S.-H. (2019). Does the use of synchrony and artificial intelligence in video interviews affect interview ratings and applicant attitudes? Computers in Human Behavior, 98, 93-101. https://doi.org/10.1016/j.cviu.2016.01.009
Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2019). TensorFlow-based automatic personality recognition used in asynchronous video interviews. IEEE Access, 7, 61018-61023. https://doi.org/10.1109/ACCESS.2019.2902863
Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2020). Intelligent video interview agent used to predict communication skill and perceived personality traits. Human-centric Computing and Information Sciences, 10(1), 1-12. https://doi.org/10.1186/s13673-020-0208-3
Suen, H.-Y., Chen, M. Y.-C., & Lu, S.-H. (2019). Does the use of synchrony and artificial intelligence in video interviews affect interview ratings and applicant attitudes? Computers in Human Behavior, 98, 93-101. https://doi.org/10.1016/j.cviu.2016.01.009
Sun, A., Li, Y., Huang, Y.-M., Li, Q., & Lu, G. (2018). Facial expression recognition using optimized active regions. Human-centric Computing and Information Sciences, 8(1), 1-24.
https://doi.org/10.1186/s13673-018-0156-3
Swider, B. W., Barrick, M. R., & Harris, T. B. (2016). Initial impressions: What they are, what they are not, and how they influence structured interview outcomes. Journal of Applied Psychology, 101(5), 625.
https://doi.org/10.1037/apl0000077
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007) . Using multivariate statistics (Vol. 5) . Pearson Boston, MA.
Tomas Chamorro-Premuzic& Reece Akhtar (2019). Should Companies Use AI to Assess Job Candidates? Harvard Business Review
https://hbr.org/2019/05/should-companies-use-ai-to-assess-job-candidates
Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42.
https://doi.org/10.1177/0008125619867910
Weiss, B., & Feldman, R. S. (2006). Looking good and lying to do it: Deception as an IM strategy in job interviews. Journal of Applied Social Psychology, 36(4), 1070–1086.
https://doi.org/10.1111/j.0021-9029.2006.00055.x
Woods, S., Dautenhahn, K., & Kaouri, C. 2005. "Is Someone Watching Me?-Consideration of Social Facilitation Effects in Human-Robot Interaction Experiments," In 2005 International Symposium on Computational Intelligence in Robotics and Automation, (pp. 53-60). IEEE. https://doi.org/10.1109/CIRA.2005.1554254
Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao M., Hou, H., Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Acess, 6, 35365-35381. IEEE. https://doi.org/10.1109/access.2018.2836950