研究生: |
楊雅媖 Ya-Ying Yang |
---|---|
論文名稱: |
藉由 Bruylants 反應合成一系列的 6-alkyluridine 衍生物 Synthesis of 6-Alkyluridine Derivatives via Bruylants Reaction |
指導教授: |
簡敦誠
Chien, Tun-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 格林納試劑 、6-alkyluridine |
英文關鍵詞: | Grignard reagent, 6-alkyluridine |
論文種類: | 學術論文 |
相關次數: | 點閱:135 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨為合成 6-alkyluridine 衍生物,作為具潛力的 orotidine 5’-monophosphate decarboxylase (ODCase) 酵素抑制劑。 6-Alkyluridines 為重要的 uridine 類似物,特別的是其構型為 syn conformation ,不同於 uridine 的 anti conformation 。 Uridine 衍生物的構型與其生物活性有密切的關係,因此 6-alkyluridine 成為探討這類生物標的物的有效探針。
在我們的研究中,嘗試利用 ethyl magnesium bromide 對 6-cyano-1,3-dimethyliracil 進行加成反應來得到 6-propinoyl-1.3-dimethyluracil ,反應結果卻意外得到直接取代的化合物 6-ethyl-1,3-dimethyliracil 。此取代反應使我們獲得不同以往文獻方法,來合成 6-alkyluridine 衍生物。
以 6-Cyano-1,3-dimethyluracil 作為反應模型,與具有 sp3 混成的格林納試劑進行取代反應,可有效率地得到 6-alkyl-1,3-dimethyluracil 產物,此外加入路易士酸 ZnCl2 可幫助提高反應的效率。此方法應用於具適當保護的 6-cyanouridine上,然後藉由與格林納試劑進行取代反應並移除保護基後,得到一系列的 6-alkyluridine 的衍生物。
我們發展一個新穎且有效率的合成方法,利用 6-cyanouridine 來得到一系列的 6-alkyluridine 衍生物。我們期望將此方法應用在合成一系列六位具取代的 uridine 上。
The focus of this thesis is the synthesis of 6-alkyuridine derivatives as po-tential inhibitors for orotidine 5’-monophosphate decarboxylase (ODCase). 6-Alkyluridines are an important class of uridine analogs that has a syn confor-mation, in contrast to the anti conformation of uridine. The conformation of uridine derivatives play an important role in the biological system, and therefore, 6-alkyluridines have become effective probes to study the interaction between the small molecules and the biological targets.
In our attempt to synthesize 6-propinoyl 1.3-dimethyluracil, the reaction of 6-cyano-1,3-dimethyluracil with ethyl magnesium bromide did not afford the desired addition product but resulted in an unexpected substitution product, 6-ethyl-1,3-dimethyluracil. The substitution reaction provided an alternative and effective route for the synthesis of 6-alkyluridine derivatives. Subsequently, 6-cyano-1,3-dimethyluracil was chosen as the reaction model to investigate the substitution reaction with Grignard reagents. In addition, the ZnCl2 as a Lewis acid was added to enhance the reaction efficiency. Our studies have shown that 6-cyano-1,3-dimethyluracil can undergo the substitution with sp3 Grignard rea-gents effectively to introduce the alkyl substituents. Therefore, the methodology was applied to an appropriately protected 6-cyanouridine and, after the deprotection, a series of 6-alkyluridine derivatives were synthesized accordingly.
We have developed a novel and efficient protocol for the synthesis of the 6-alkyluridine derivatives from the corresponding 6-cyanouridines. We antici-pated that this approach will be feasible for the preparation a wide variety of 6-substituted uridine.
1.Pragobpol, S.; Gero, A; Lee, C.; O`sullivan, W. Arch. Biochem. Biophys. 1984, 230 (1), 285.
2.Radzicka, A.; Wolfenden, R. Science, 1995, 267 (5194), 90-93.
3.Gero, A.; O`sullivan, W.; Van Dyke, K. Blood Cells, 1990, 16 (2-3), 467-498.
4.Christopherson, R. I.; Lyons, S. D.; Wilson, P.K. Acc. Chem. Res. 2002, 35 (11), 961-971.
5.Krungkrai, J.; Krungkrai, S.; Phakanont, K. Biochem. Pharmacol. 1992, 43 (6), 1295-1301.
6.Scott, H.; Gero, A.; O`sullivan, W. Mol. Biochem. Parasitol. 1986, 18 (1), 3-15.
7.Seymour, K. K.; Lyons, S. D.; Phillips, L.; Rieclmann, K. H.; Christopherson, R. I. Biochemistry, 1994, 33 (17), 5268-5274.
8.Poduch, E.; Bello, A. M.; Tang. S.; Fujihashi, M.; Pai, E. F.; Kotra, L. P. J. Med. Chem. 2006, 49 (16), 4937-4945.
9.Bello, A. M.; Poduch, E.; Fujihashi, M.; Amani, M.; Li, Y.; Crandall, I.; Hui, R.; Lee, P. I.; Kain, K. C.; Pai, E. F.; Kotra, L. P. J. Med. Chem. 2007, 50 (51), 915-921.
10.Levine, H. L.; Brody, R. S.; Westheimer, F. H. Biochemistry, 1980, 19 (22), 4993-4999.
11.Ringer, D.; Howell, B.; Etheredge, J. J. Biochem. Toxicol 1991, 6 (1), 19-27.
12.Cadman, E. C.; Dix, D. E.; Handsxhumacher, R. E. Cancer. Res. 1978, 38 (3), 682-288.
13.Miller, B. G.; Hassell, A. M.; Wolfenden, R.; Milburn, M. V.; Short, S. A. Proc. Natl. Acad. Sci. USA. 2000, 97 (5), 2011-2016.
14.Felczak, K.; Drabikowska, A. K.; Vilpo, J. A.; Kulikowski, T.; Shugar, D. J. Med. Chem. 1996, 39 (8), 1720-1728.
15.Fujihashi, M.; Bello, A. M.; Poduch, E.; Wei, L.; Annedi, S. C.; Pai, E. F.; Kotra, L. P. J. Am. Chem. Soc. 2005, 127 (43), 15048-15050.
16.Bello, A. M.; Poduch, E.; Liu, Y.; Wei, L.; Crandall, I.; Wang, X.; Dyanand, C.; Kain, K. C.; Pai, E. F.; Kotra, L. P. J. Med. Chem. 2008, 51 (3), 439-448.
17.Miles, D. W.; Robins, M. J.; Robins, R. K.; Winkley, M. W.; Eyring, H. J. Am. Chem. Soc. 1969, 91 (4), 824-831.
18.Miles, D. W.; Robins, M. J.; Robins, R. K.; Winkley, M. W.; Eyring, H. J. Am. Chem. Soc. 1969, 91 (4), 831-838.
19.Suck, D.; Saenger, W.; Vorbrueggen, H. Nature 1972, 235 (5337), 333-334.
20.Schweizer, M. P.; Banta, E. B.; Witkowski, J. T.; Robins, R. K. J. Am. Chem. Soc. 1973, 95 (11), 3770-3778.
21.Niedballa, U.; Vorbruggen, H. J. Org. Chem. 1974, 39 (25), 3660-3663.
22.Otter, B. A.; Taube, A.; Foz, J. J. J. Org. Chem. 1971, 36 (9), 1251-1255.
23.Tanaka, H.; Hayakawa, H.; Shibata, S.; Haraguchi, K.; Miyasaka, T. Nucleo-side Nucleotides, 1992, 11 (2-4), 319-328.
24.Shih, Y. C.; Chien, T. C. Tetrahedron 2011, 67, 3915-3923.
25.Nguuen, N. H.; Len, C.; Castanet, A. S.; Mortier, J. Beilstein. J. Org. Chem. 2011, 7 (143), 1228-1233.
26.Bruylants, P. Bull. Soc. Chim. Belg. 1924, 33, 467-78.
27.Amos, D. T.; Renslo, A. R.; Danheiser, R. L. J. Am. Chem. Soc. 2003, 125, 4970-4971.
28.Beaufort-Droal, V.; Pereira, E.; Thery, V.; Aitken, D. J. Tetrahedron 2006, 62, 11948-11954.
29.Donald, J. R.; Martin, S. F. Org. Lett. 2011, 13,852-855.
30.Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43 (14), 2923-2925.