簡易檢索 / 詳目顯示

研究生: 謝宗恩
Hsieh, Tzung-En
論文名稱: 魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討
Structure Resolution of Magic-Sized (CdSe)13 Nanoclusters and Application of Cation-/Anion-Substituted 2D CdSe(en)0.5 Nanosheets
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 142
中文關鍵詞: 硒化鎘魔術尺寸團簇物小角散射X光吸收光譜自組裝二維結構陰陽離子交換光催化水分解
英文關鍵詞: Cadmium selenide, magic-size clusters, SAXS, XAS, self-assembly, 2D structure, anion/cation exchange, photocatalytic water splitting
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.058.2018.B05
論文種類: 學術論文
相關次數: 點閱:152下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究專注於研究強量子侷限效應的硒化鎘奈米材料,並分別從零維的魔術尺寸奈米團簇物與二維單層結構之奈米片進行探討。於魔術尺寸奈米團簇物之研究當中,我們以目前文獻報導尺寸最小也最穩定的(CdSe)13奈米團簇物作為研究對象,嘗試解析其結構。在本論文中,我們應用多種非破壞性的鑑定方法,如紫外光-可見光吸收光譜、X光繞射技術、X光小角/廣角散射技術、X光光電子能譜、X光吸收光譜與固態核磁共振技術,研究(CdSe)13¬團簇物之電子結構、合成機制、原子結構排列、團簇物尺寸、原子配位環境與原子化學環境等,以建構雙生團簇物模型並驗證之。除了實驗部分以外,本研究更與理論計算實驗室合作,以DFT計算方法建構團簇物之結構模型,並模擬其電荷密度與相對能量,進一步與實驗部分數據互相驗證並證實雙生團簇物之存在合理性。
    在二維奈米材料研究中,我們選擇相同的CdSe半導體材料作為主體,以雙頭胺配位基合成高結晶性之二維單層CdSe奈米片,並以奈米片作為主要材料,進行陰/陽離子置換研究。本論文選用同為第十六族之S作為陰離子置換元素,嘗試探討S取代反應於二維奈米片中的位向選擇性以及其對奈米片的光學,電學性質之影響。硫化反應後的具孔洞性質的CdSe/CdS奈米片更進一步應用於氮氣與二氧化碳吸附研究。陽離子置換的研究當中,我們選擇具高電荷傳導性的Fe, Ni以及具有特殊光學性質的Ag作為陽離子交換試劑,嘗試調整奈米片之光學性質,並進一步發展光電或熱電材料。

    In this research, we focus on structure resolution and applications of strong quantum confined-cadmium selenide semiconductor with 0D (nanocluster) and 2D (nanosheets) morphologies. In nanocluster part, we resolved the structure of smallest-magic-sized (CdSe)13 nanoclusters. With a combination of nondestructive SAXS, WAXS, XRD, XPS, EXAFS, and MAS NMR techniques, we are able to verify the phase transformation, shape, size dimension, local bonding, and chemical environments of (CdSe)13 nanoclusters, which are indicative of a twin-cluster model. Additionally, the size, shape, bond lengths, dipole moment, and charge densities of the proposed “twin-tubular geometry” calculated by computational methods match consistently with our experimental results. For 2D nanosheets, we reported the post synthetic researches of elements doped CdxM1-xSe(en)0.5 and CdSeyX1-y(en)0.5 nanosheets from strong quantum confined CdSe(en)0.5 nanosheets via ion exchange reaction with the via various cationic/anionic reagents. The active site of sulfurization reaction is determined and the “porous nanosheets” is synthesized while sulfurization. In addition, Fe, Ni, Ag were employed as cationic reagent since the unique optical properties and outstanding charge transfer ability which have been reported. We try to develop a new class of 2D nanomaterial applied in photovoltaic and photocatalytic fields.

    第一章 緒論 1 1.1 魔術尺寸奈米團簇物的發現 1 1.2 (CdSe)13奈米團簇物的發展及應用 3 1.3 奈米團簇物結構解析的困境與突破 6 1.4 從CdSe奈米團簇物到二維結構奈米片材料 9 1.5 CdSe奈米半導體材料的發展及應用 10 1.6 二維結構半導體的研究現況與後續發展 11 第二章 實驗方法 13 2.1化學藥品 13 2.2 合成[(CdSe)13]2 雙生奈米團簇物 15 2.2.1 硒前驅物合成 15 2.2.2 鎘前驅物合成 15 2.2.3 硒化鎘奈米團簇物合成 15 2.3 油胺置換法合成 (CdSe)13(OLA)13奈米團簇物 17 2.4 合成二維CdSe(en)0.5 奈米片 18 2.4.1 硒前驅物合成(硒粉/硼氫化鈉) 18 2.4.2 鎘前驅物合成 18 2.4.3 二維硒化鎘奈米片合成 19 2.5 CdSe(en)0.5進行光催化硫離子交換與水分解產氫反應 20 2.6 CdSe(en)0.5 進行Fe, Ni離子交換反應 21 2.7 儀器鑑定技術 22 2.7.1 紫外-可見光吸收光譜儀 22 2.7.2 螢光光譜儀 22 2.7.3穿透式電子顯微鏡 22 2.7.4高解析掃描式電子顯微鏡 22 2.7.5場發射掃描穿透式球差修正電子顯微鏡 23 2.7.6 X光粉末繞射儀 23 2.7.7元素分析儀 24 2.7.8拉曼光譜儀 24 2.7.9界達電位分析儀 24 2.7.10 X光吸收光譜-延伸X光吸收精細結構 25 2.7.11四極探針台電性測量儀 25 2.7.12能量色散光譜 (EDS) 26 2.7.13 UV-A低壓汞燈 26 2.7.14 X光-光電子能譜 (XPS, ESCA) 26 2.7.15 BET比表面積量測儀 26 2.7.16同步輻射X光小角及廣角散射儀 27 2.7.17固態核磁共振儀及魔術角度旋轉技術 27 2.7.18交叉極化與異核交聯感應技術(HETCOR) 28 第三章 結果與討論 29 3.1 魔術尺寸雙生[(CdSe)13(OA)13]2奈米團簇物結構解析 29 3.1.1 [(CdSe)13(OA)13]2生長機制探討 29 3.1.2 [(CdSe)13(OA)13]2再結晶後性質探討 34 3.1.3 建構(CdSe)13 奈米團簇物之尺寸大小 36 3.1.4 以DFT理論計算方法建構雙生奈米團簇物模型 40 3.1.5以DFT/TDDFT 理論計算探討電荷分布與轉移效應 44 3.1.6 [(CdSe)13(OA)13]2 之電子結構探討 47 3.1.7 [(CdSe)13(OA)13]2 之配位環境與鍵長探討 50 3.1.8 [(CdSe)13(OA)13]2 之化學環境與表面原子交互作用探討 58 3.1.9 (CdSe)13自組裝形成二維奈米片之機制探討 65 3.2 二維結構CdSe(en)0.5 進行陰陽離子交換之反應探討及應用 69 3.2.1 CdSe(en)0.5 結構與光學性質探討 69 3.2.2 硫化後CdSexS1-x(en)0.5 之形貌與結構探討 73 3.2.3 硫化反應對奈米片光學性質的影響 77 3.2.4 硫化反應環境調整對反應之影響探討 79 3.2.5 硫化反應對於奈米片型貌變化及其晶面選擇性探討 88 3.2.6 UV光對於硫化反應之影響探討 95 3.2.7 硫化反應對CdSe(en)0.5孔洞性質的影響探討 104 3.2.8 硫化CdSexS1-x(en)0.5之導電性與光電性質探討 109 3.2.9 以CdSe(en)0.5進行陽離子交換之反應性探討 112 3.2.10 陽離子取代CdxM1-xSe(en)0.5 (M = Fe, Ni)之應用探討 123 第四章 結論與未來展望 131 參考文獻 133

    (1) Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L., Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936.
    (2) Grebinski, J. W.; Hull, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M., Solution-Based Straight and Branched CdSe Nanowires. Chem. Mater. 2004, 16, 5260-5272.
    (3) Pradhan, N.; Xu, H.; Peng, X., Colloidal CdSe Quantum Wires by Oriented Attachment. Nano Lett. 2006, 6, 720-724.
    (4) Li, T.; Senesi, A. J.; Lee, B., Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128-11180.
    (5) Luo, X.; Liu, P.; Truong, N. T. N.; Farva, U.; Park, C., Photoluminescence Blue-Shift of CdSe Nanoparticles Caused by Exchange of Surface Capping Layer. J. Phys. Chem. C 2011, 115, 20817-20823.
    (6) Wang, Y.; Liu, Y.-H.; Zhang, Y.; Wang, F.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E., Isolation of the Magic-Size CdSe Nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. Int. Ed. 2012, 51, 6154-6157.
    (7) Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E., Preparation of Primary Amine Derivatives of the Magic-Size Nanocluster (CdSe)13. Inorg. Chem. 2013, 52, 2933-2938.
    (8) Nguyen, K. A.; Day, P. N.; Pachter, R., Understanding Structural and Optical Properties of Nanoscale CdSe Magic-Size Quantum Dots: Insight from Computational Prediction. J. Phys. Chem. C 2010, 114, 16197-16209.
    (9) Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L., Sequential Growth of Magic-Size CdSe Nanocrystals. Adv. Mater. 2007, 19, 548-552.
    (10) Liu, Y.-H.; Wang, F.; Wang, Y.; Gibbons, P. C.; Buhro, W. E., Lamellar Assembly of Cadmium Selenide Nanoclusters into Quantum Belts. J. Am. Chem. Soc. 2011, 133, 17005-17013.
    (11) Cossairt, B. M.; Owen, J. S., CdSe Clusters: At the Interface of Small Molecules and Quantum Dots. Chem. Mater. 2011, 23, 3114-3119.
    (12) Tang, Z.; Kotov, N. A.; Giersig, M., Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002, 297, 237-240.
    (13) Wang, Y.; Zhang, Y.; Wang, F.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E., The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets. Chem. Mater. 2014, 26, 2233-2243.
    (14) Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A., Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets. Science 2006, 314, 274-278.
    (15) Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M., Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates. Chem. Mater. 2015, 27, 1432-1441.
    (16) Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y., Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99-102.
    (17) Yu, K., CdSe Magic-Sized Nuclei, Magic-Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth. Adv. Mater. 2012, 24, 1123-1132.
    (18) Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knusel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J., An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743-748.
    (19) Liu, Y.; Zhang, B.; Fan, H.; Rowell, N.; Willis, M.; Zheng, X.; Che, R.; Han, S.; Yu, K., Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chem. Mater. 2018.
    (20) Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D., Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. J. Am. Chem. Soc. 2018, 140, 3652-3662.
    (21) Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A., From 1D Chain to 3D Network:  Tuning Hybrid II-VI Nanostructures and Their Optical Properties. J. Am. Chem. Soc. 2003, 125, 7049-7055.
    (22) Ithurria, S.; Dubertret, B., Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level. J. Am. Chem. Soc. 2008, 130, 16504-16505.
    (23) Azpiroz, J. M.; Matxain, J. M.; Infante, I.; Lopez, X.; Ugalde, J. M., A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys. Chem. Chem. Phys. 2013, 15, 10996-11005.
    (24) Gao, Y.; Zhou, B.; Kang, S.-g.; Xin, M.; Yang, P.; Dai, X.; Wang, Z.; Zhou, R., Effect of ligands on the characteristics of (CdSe)13 quantum dots. RSC Adv. 2014, 4, 27146-27151.
    (25) Nguyen, K. A.; Pachter, R.; Day, P. N., Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters. J. Chem. Theory Comput. 2013, 9, 3581-3596.
    (26) Sanville, E.; Burnin, A.; BelBruno, J. J., Experimental and Computational Study of Small (n = 1−16) Stoichiometric Zinc and Cadmium Chalcogenide Clusters. J. Phys. Chem. A 2006, 110, 2378-2386.
    (27) Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R., Digital Doping in Magic-Sized CdSe Clusters. ACS Nano 2016, 10, 7135-7141.
    (28) Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H.-K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S.-J.; Bacher, G.; Hyeon, T., Route to the Smallest Doped Semiconductor: Mn2+-Doped (CdSe)13 Clusters. J. Am. Chem. Soc. 2015, 137, 12776-12779.
    (29) Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K.-T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S.; Park, J.-H.; Kim, Y.-W.; Hwang, G. S.; Dobrowolska, M.; Furdyna, J. K.; Hyeon, T., Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 2009, 9, 47.
    (30) Wilcoxon, J. P.; Abrams, B. L., Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162-1194.
    (31) Ouyang, J.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K., Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses. J. Phys. Chem. C 2008, 112, 13805-13811.
    (32) Harrell, S. M.; McBride, J. R.; Rosenthal, S. J., Synthesis of Ultrasmall and Magic-Sized CdSe Nanocrystals. Chem. Mater. 2013, 25, 1199-1210.
    (33) García-Rodríguez, R.; Liu, H., Mechanistic Insights into the Role of Alkylamine in the Synthesis of CdSe Nanocrystals. J. Am. Chem. Soc. 2014, 136, 1968-1975.
    (34) Hua, X.; Liu, Z.; Bruce, P. G.; Grey, C. P., The Morphology of TiO2 (B) Nanoparticles. J. Am. Chem. Soc. 2015, 137, 13612-13623.
    (35) Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715.
    (36) Liu, M.; Wang, K.; Wang, L.; Han, S.; Fan, H.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F.; Zeng, J.; Yu, K., Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nature Communications 2017, 8, 15467.
    (37) Berrettini, M. G.; Braun, G.; Hu, J. G.; Strouse, G. F., NMR Analysis of Surfaces and Interfaces in 2-nm CdSe. J. Am. Chem. Soc. 2004, 126, 7063-7070.
    (38) Kitazawa, S.; Hiraoki, T.; Hamada, T.; Tsutsumi, A., Side Chain Dynamics of Poly(γ-[κ-2H1]benzyl L-glutamate) and Poly(γ-[ζ-2H2]benzyl L-glutamate) by Solid State 2H NMR. Polym. J. 1994, 26, 1213.
    (39) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 1997, 119, 7019-7029.
    (40) Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G., Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc. 2000, 122, 12142-12150.
    (41) Soloviev, V. N.; Eichhöfer, A.; Fenske, D.; Banin, U., Molecular Limit of a Bulk Semiconductor:  Size Dependence of the “Band Gap” in CdSe Cluster Molecules. J. Am. Chem. Soc. 2000, 122, 2673-2674.
    (42) Peng, Z. A.; Peng, X., Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 2001, 123, 183-184.
    (43) Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T., Low-Temperature Solution-Phase Synthesis of Quantum Well Structured CdSe Nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632-5633.
    (44) Aruguete, D. M.; Marcus, M. A.; Li, L.-s.; Williamson, A.; Fakra, S.; Gygi, F.; Galli, G. A.; Alivisatos, A. P., Surface Structure of CdSe Nanorods Revealed by Combined X-ray Absorption Fine Structure Measurements and ab Initio Calculations. J. Phys. Chem. C 2007, 111, 75-79.
    (45) Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. i.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G.; Choi, S. H.; Wang, Z.; Kim, Y. W.; Kuk, Y.; Hoffmann, R.; Hyeon, T., Large‐Scale Soft Colloidal Template Synthesis of 1.4 nm Thick CdSe Nanosheets. Angew. Chem. Int. Ed. 2009, 48, 6861-6864.
    (46) Yu, W. W.; Qu, L.; Guo, W.; Peng, X., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854-2860.
    (47) Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P.; Califano, M., Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots. J. Phys. Chem. C 2009, 113, 19468-19474.
    (48) Troparevsky, M. C.; Kronik, L.; Chelikowsky, J. R., Optical properties of CdSe quantum dots. J. Chem. Phys. 2003, 119, 2284-2287.
    (49) Sun, M.; Yang, X., Phosphine-Free Synthesis of High-Quality CdSe Nanocrystals in Noncoordination Solvents: “Activating Agent” and “Nucleating Agent” Controlled Nucleation and Growth. J. Phys. Chem. C 2009, 113, 8701-8709.
    (50) Lv, H.; Ruberu, T. P. A.; Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.; Eisenberg, R., Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes. J. Am. Chem. Soc. 2016, 138, 11654-11663.
    (51) Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D., Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst. Science 2012, 338, 1321.
    (52) Son, D. H.; Hughes, S. M.; Yin, Y.; Paul Alivisatos, A., Cation Exchange Reactions in Ionic Nanocrystals. Science 2004, 306, 1009.
    (53) Vlaskin, V. A.; Barrows, C. J.; Erickson, C. S.; Gamelin, D. R., Nanocrystal Diffusion Doping. J. Am. Chem. Soc. 2013, 135, 14380-14389.
    (54) Yin, X.-L.; Li, L.-L.; Jiang, W.-J.; Zhang, Y.; Zhang, X.; Wan, L.-J.; Hu, J.-S., MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation. Appl. Mater. Interfaces 2016, 8, 15258-15266.
    (55) Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M., Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catalysis 2015, 5, 6615-6623.
    (56) Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y., Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 2015, 137, 1572-1580.
    (57) Heeley, E. L.; Hughes, D. J.; El Aziz, Y.; Williamson, I.; Taylor, P. G.; Bassindale, A. R., Properties and self-assembled packing morphology of long alkyl-chained substituted polyhedral oligomeric silsesquioxanes (POSS) cages. Phys. Chem. Chem. Phys. 2013, 15, 5518-5529.
    (58) Greaves, T. L.; Broomhall, H.; Weerawardena, A.; Osborne, D. A.; Canonge, B. A.; Drummond, C. J., How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals. Faraday Discuss. 2017, 206, 29-48.
    (59) Sangthong, W.; Limtrakul, J.; Illas, F.; Bromley, S. T., Persistence of magic cluster stability in ultra-thin semiconductor nanorods. Nanoscale 2010, 2, 72-77.
    (60) Del Ben, M.; Havenith, R. W. A.; Broer, R.; Stener, M., Density Functional Study on the Morphology and Photoabsorption of CdSe Nanoclusters. J. Phys. Chem. C 2011, 115, 16782-16796.
    (61) Alexander, S.; Morrow, L.; Lord, A. M.; Dunnill, C. W.; Barron, A. R., pH-responsive octylamine coupling modification of carboxylated aluminium oxide surfaces. J. Mater. Chem. A 2015, 3, 10052-10059.
    (62) Subila, K. B.; Kishore Kumar, G.; Shivaprasad, S. M.; George Thomas, K., Luminescence Properties of CdSe Quantum Dots: Role of Crystal Structure and Surface Composition. J. Phys. Chem. Lett. 2013, 4, 2774-2779.
    (63) Safronov, A. P.; Kurlyandskaya, G. V.; Chlenova, A. A.; Kuznetsov, M. V.; Bazhin, D. N.; Beketov, I. V.; Sanchez-Ilarduya, M. B.; Martinez-Amesti, A., Carbon Deposition from Aromatic Solvents onto Active Intact 3d Metal Surface at Ambient Conditions. Langmuir 2014, 30, 3243-3253.
    (64) Bottke, P.; Rettenwander, D.; Schmidt, W.; Amthauer, G.; Wilkening, M., Ion Dynamics in Solid Electrolytes: NMR Reveals the Elementary Steps of Li+ Hopping in the Garnet Li6.5La3Zr1.75Mo0.25O12. Chem. Mater. 2015, 27, 6571-6582.
    (65) Arbi, K.; Hoelzel, M.; Kuhn, A.; Garcia-Alvarado, F.; Sanz, J., Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study. Phys. Chem. Chem. Phys. 2014, 16, 18397-18405.
    (66) Liu, Y.; Zhang, B.; Fan, H.; Rowell, N.; Willis, M.; Zheng, X.; Che, R.; Han, S.; Yu, K., Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures. Chem. Mater. 2018, 30, 1575-1584.
    (67) Dworak, L.; Matylitsky, V. V.; Breus, V. V.; Braun, M.; Basché, T.; Wachtveitl, J., Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells. J. Phys. Chem. C 2011, 115, 3949-3955.
    (68) Chen, J.; Wu, X.-J.; Gong, Y.; Zhu, Y.; Yang, Z.; Li, B.; Lu, Q.; Yu, Y.; Han, S.; Zhang, Z.; Zong, Y.; Han, Y.; Gu, L.; Zhang, H., Edge Epitaxy of Two-Dimensional MoSe2 and MoS2 Nanosheets on One-Dimensional Nanowires. J. Am. Chem. Soc. 2017, 139, 8653-8660.
    (69) Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F., Ag–Sn Bimetallic Catalyst with a Core–Shell Structure for CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 1885-1893.
    (70) Ipe, B. I.; Lehnig, M.; Niemeyer Christof , M., On the Generation of Free Radical Species from Quantum Dots. Small 2005, 1, 706-709.
    (71) Rockenberger, J.; Tröger, L.; Kornowski, A.; Vossmeyer, T.; Eychmüller, A.; Feldhaus, J.; Weller, H., EXAFS Studies on the Size Dependence of Structural and Dynamic Properties of CdS Nanoparticles. J. Phys. Chem. B 1997, 101, 2691-2701.
    (72) Sowers, K. L.; Hou, Z.; Peterson, J. J.; Swartz, B.; Pal, S.; Prezhdo, O.; Krauss, T. D., Photophysical Properties of CdSe/CdS core/shell quantum dots with tunable surface composition. Chem. Phys. 2016, 471, 24-31.
    (73) Li, X.-B.; Gao, Y.-J.; Wang, Y.; Zhan, F.; Zhang, X.-Y.; Kong, Q.-Y.; Zhao, N.-J.; Guo, Q.; Wu, H.-L.; Li, Z.-J.; Tao, Y.; Zhang, J.-P.; Chen, B.; Tung, C.-H.; Wu, L.-Z., Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. J. Am. Chem. Soc. 2017, 139, 4789-4796.
    (74) Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. J. Am. Chem. Soc. 2015, 137, 3585-3591.
    (75) Ladavos, A. K.; Katsoulidis, A. P.; Iosifidis, A.; Triantafyllidis, K. S.; Pinnavaia, T. J.; Pomonis, P. J., The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous Mesoporous Mater. 2012, 151, 126-133.
    (76) Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A., Adsorption hysteresis in nanopores. Physical Review E 2000, 62, R1493-R1496.
    (77) Schmidt, R.; Hansen, E. W.; Stoecker, M.; Akporiaye, D.; Ellestad, O. H., Pore Size Determination of MCM-51 Mesoporous Materials by means of 1H NMR Spectroscopy, N2 adsorption, and HREM. A Preliminary Study. J. Am. Chem. Soc. 1995, 117, 4049-4056.
    (78) Mel'gunov, M. S.; Ayupov, A. B., Direct method for evaluation of BET adsorbed monolayer capacity. Microporous Mesoporous Mater. 2017, 243, 147-153.
    (79) Kim, K. C.; Yoon, T.-U.; Bae, Y.-S., Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous Mesoporous Mater. 2016, 224, 294-301.
    (80) Wang, Y.; Zhong, H.; Hu, L.; Yan, N.; Hu, H.; Chen, Q., Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J. Mater. Chem. A 2013, 1, 2621-2630.
    (81) Andrew Frame, F.; Carroll, E. C.; Larsen, D. S.; Sarahan, M.; Browning, N. D.; Osterloh, F. E., First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem. Commun. 2008, 2206-2208.
    (82) Miao, R.; Dutta, B.; Sahoo, S.; He, J.; Zhong, W.; Cetegen, S. A.; Jiang, T.; Alpay, S. P.; Suib, S. L., Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2017, 139, 13604-13607.

    下載圖示
    QR CODE