研究生: |
駱亮安 Luo, Liang-An |
---|---|
論文名稱: |
奈米銀化CD-R基板在表面增強拉曼散射(SERS)上之研究與應用 The Study and Application of Nanosilver/CD-R Substrate in Surface-Enhanced Raman Scattering (SERS) |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 咖啡環效應 、奈米粒子 、表面增強拉曼散射 |
英文關鍵詞: | coffee ring effect, nanoparticles, surface-enhanced Raman Scattering |
DOI URL: | https://doi.org/10.6345/NTNU202204185 |
論文種類: | 學術論文 |
相關次數: | 點閱:169 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般拉曼光譜儀搭配顯微鏡會使用載玻片作為樣品基板,然而樣品乾燥在基板上時,樣品會出現咖啡環效應,使得樣品分佈不均勻,尤其在偵測低濃度樣品時,會讓實驗更為困難,因此本研究試圖使用CD-R作為基板,並搭配奈米粒子作表面增強拉曼散射(SERS),解決樣品分佈不均及難以測得低濃度的問題。
本研究使用具有疏水性表面的CD-R作為表面增強拉曼光譜的基板。去除紀錄層和保護層以後,以SEM (scanning electron microscope)發現CD-R的表面具有微陣列結構,每一個陣列縫隙約為341 nm。滴約直徑2 mm大小的液珠在CD-R和載玻片上,以接觸角儀測出CD-R接觸角為84°,載玻片的接觸角為20°,此顯示出CD-R提供較高的疏水性表面,為使用CD-R基板可以減少咖啡環效應的原因。
預混合NH2OH · HCl (1.67 × 10-3 M/90 mL) 和NaOH (0.519 M/0.577 mL),在2000 rpm的轉速攪拌下,加入0.01 M AgNO3 10 mL,持續攪拌4.5分鐘後完成土黃色的奈米銀膠體溶液。
在CD-R滴奈米銀膠體溶液自然乾燥後,奈米銀粒子可以推積在微陣列縫隙中,奈米銀膠體溶液的UV-Vis的吸收在406 nm,奈米銀粒子大小約20 nm,這種奈米銀粒子大小在雷射照射下,可以感應出表面電漿共振。為了評估奈米銀CD-R基板的表現性,對-胺基苯硫酚 (4-ATP)和孔雀石綠(MG)選作測試樣品,p-ATP上的硫原子易和奈米銀粒子鍵結,此共價鍵會讓C-S的能量下降,造成1089 cm-1 (拉曼訊號) 偏移至1077 cm-1 (SERS訊號),估算出的增強因子為3×〖10〗^6。
With a high hydrophobic surface, CD-R was selected as the substrate of SERS (Surface Enhanced Raman Scattering) in this study. After removing the recording and protective layers, it was found that the surface of the CD-R was constructed with microarray structures; the width between each microarray was approximately 341 nm, observed by SEM (scanning electron microscope). By using a contact angle-meter, to a drop of water (diameter of 2 mm), the contact angles of the CD-R and a regular glass slide were found to 84° and 20°, respectively. It reveals that the CD-R substrate provides higher hydrophobic feature than glass slide. This is also the reason for why the use of CD-R substrate can avoid coffee ring effect.
Nano-silver colloid solution was prepared by pre-mixing NH2OH · HCl (1.67 × 10-3 M/90 mL) and NaOH (0.519 M/0.577 mL). After vigorous stirring at speed 2000 rpm, 0.01 M AgNO3 10 mL was added to the above solution and continue stirring in 4.5 minutes. After this, a wheat nano-silver colloid Solution was completed. When a drop of nano-silver colloid solution was dropped on the CD-R substrate, it would be spontaneously dried, and then the nano-silver particles can be uniformly deposited on the surface, leading to make silver-CD-R substrate. The wavelength of maximum absorbance was 406 nm. The sizes of the nano-silver particles on CD-R were about 20 nm, which size was useful to induce a surface plasma resonance when a laser was used. In order to evaluate the performance of the silver/CD-R substrate, 4-ATP (p-aminothiophenol) was selected as the test sample. The findings show that the sulfur atom was easy to bond with nano-silver particles. We found that a covalent bond might be formed between the sulfur atom and nano-silver particles, and as a result, the energy of C-S bond was decreased, since the energy of a C-S bond was decreased from 1088 cm-1 (Raman signal) to 1077 cm-1 (SERS signal). Based on this signal, a 3000 fold enhancement factor was calculated.
[1] Avella-Oliver, M.; Morais, S.; Carrascosa, J.; Puchades, R.; Maquieira, A., Anal. Chem. 2014, 86, 12037-12046.
[2] Wallace, R. A.; Charlton, J. J.; Kirchner, T. B.; Lavrik, N. V.;Datsko, P. G.; Sepaniak, M., J. Anal. Chem. 2014, 86, 11819-11825.
[3] Hu, X.; Wang, T.; Wang, L.; Dong, S., J. Phys. Chem. C 2007, 111, 6962-6969.
[4] Liu, X.; Tang, L.; Niessner, R.; Ying, Y.; Haisch, C., Anal. Chem. 2015, 87, 499-506.
[5] Huang, Y. F.; Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.; Ren, B.; Tian, Z. Q., J. Phys. Chem. 2012, 14, 8485-8497.
[6] Culp, S. J.; Beland, F. A.; Heflich, R. H.; Benson, R. W.; Blankenship, L. R.; Webb, P. J.; Mellick, P. W.; Trotter, R. W.; Shelton, S. D.; Greenless, K. J.; Manjanatha, M. G., Mutat. Res. 2002, 55-63, 506-507.
[7] Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P., J. Raman Spectrosc. 2015, 46, 1003-1015.
[8] Yu, B. S.; Fang, J. N.; Huang, E. P., J. Raman Spectrosc. 2013, 44, 630-636.
[9] Eremin, K.; Stenger, J.; Green, M. Li, J. Raman Spectrosc. 2006, 37, 1119-1124.
[10] Spec, T.; Retko, K.; Ropret, P.; Moden, A.; Bernard, J., J. Raman Spectrosc. 2014, 45, 1068-1075.
[11] Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chem. Phys. Lett. 1974, 26(2), 163-166.
[12] Pham, Tan; Jackson, J. B.; Halas, N. J.; Lee, T. R., Langmuir. 2002, 18, 4915-4920.
[13] Yang, T.; Yang, H.; Zhen, S. J.; Huang, C. Z., ACS Appl. Mater. Interfaces. 2015, 7, 1586-1594.
[14] Zhang, L., Appl. Surf. Sci. 2013, 270, 292-294.
[15] Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L., Anal. Chem. 2016, 88, 2149-2155.
[16] Liu, B. -H.; Han, G. -M.; Zhang, Z. -P.; Liu, R. -Y.; Jiang, C. -L.; Wang, S. -H.; Han, M. -Y., Anal. Chem. 2012, 84, 255-261.
奈米星
[17] Zhu, Y. -Q.; Li, M. -Q.; Yu, D. -Y.; Yang, L. -G., Talanta. 2014, 128, 117-124.
[18] Borzenkov, M.; Maättänen, A.; Ihalainen, P.; Collini, M.; Cabrini, E.; Dacarro, G.; Pallavicini, P.; Chirico, G., ACS Appl. Mater. Interfaces. 2016, 8, 9909-9916.
[19] Kumar V.; Patil, V. B.; Apte, A.; Harale, N. S.; Patil, P . S.; Kulkarni S. K., Langmuir, 2015, 31, 13247-13256.
[20] Park, Y. I.; Im, H.; Weissleder, R.; Lee, H., Bioconjug. Chem. 2015, 26, 1470-1474.
[21] Shiohara, A.; Novikov, S. M.; Solís, D. M.; Taboada, J. M.; Obelleiro, F., J. Phys. Chem. 2015, 119, 10836-10843.
[22] Lee, I.-H.; Amaladass, P.; Yoon, K.-Y.; Shin, S.; Kim, Y.-J.; Kim, I.; Lee, E.; Choi, T.-L., J. Am. Chem. Soc. 2013, 135, 17695−17698.
[23] Osinkina, L.; Lohmüller, T.; Jackel, F.; Feldmann, J., J. Phys. Chem. 2013, 117, 22198-22202.
[24] Lei, W.; Zhang, T. -T.; Gu, L.; Liu, P.; Rodriguez, J. -A.; Liu, G.; Liu, M., J. Catal. 2015, 5, 4385-4393.
[25] Du, L.; Wang, Y. -J.; Ren, Z. -G.; Shen, C.; Luo, G. -S., Ind. Eng. Chem. Res. 2016, 55, 6783−6791.
[26] Zhao, J. -J.; Zhang, K.; Li, Y. -X.; Ji, J.; Liu, B. -H., ACS Appl. Mater. Interfaces. 2016, 8, 14389-14395.
[27] Szlag, V. M.; Styles, M. J.; Madison, L. R.; Campos, A. R.; Waph, B. S.; Sprouse, D.; Schatz, G. C.; Reineke, T. M.; Haynes , C. L., ACS Sens. 2016.
[28] Yang, T.; Ma, J.; Zhen, S. -J.; Huang, C. -Z., ACS Appl. Mater. Interfaces. 2016, 8, 14802-14811.
[29] Piotrowski, P.; Bukowska, J., J. Phys. Chem. 2016, 20, 12092-12099.
[30] Serrano-Montes, A. B.; Langer, J.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Sentosun, K.; Bals, S.; Bekdemir, A.; Stellacci, F.; Liz-Marzán, L. M., J. Phys. Chem. 2016.
[31] Lofrumento, C.; Platania, E.; Ricci, M.; Becucci, M.; Castellucci, E. M., J. Phys. Chem. 2016, 120, 12234-12241.
[32] Pereira, A. J.; Gomes, J. P.; Lenz, G. F.; Schneider, R.; Chaker, J. A.; Narciso de Souza, P. E.; Felix, J. F., J. Phys. Chem. 2016, 120, 12265-12272.
[33] Liu, Z. -G.; Wang, Y.; Deng, R.; Yang, L. -Y.; Yu, S. -H.; Xu, S. -P.; Xu. W. -Q., ACS Appl. Mater. Interfaces. 2016, 8, 14160-14168.
[34] Jia, Y.; Shmakov, S. N.; Pinkhassik, E., ACS Appl. Mater. Interfaces. 2016.
[35] Kalachyova, Y.; Mares, D.; Jerabek, V.; Zaruba, K.; Ulbrich, P.; Lapcak, L.; Svorcik, V., J. Phys. Chem. 2016, 120, 10569-10577.
[36] Lee, D. -D.; Yoon, S. -W., J. Phys. Chem. 2016.
[37] Taylor, R. W.; Esteban, R.; Mahajan, S.; Aizpurua, J.; Baumberg, J. J., J. Phys. Chem. 2016, 120, 10512-10522.
[38] Su, X. -M.; Wang, Y. -Q.; Wang, W. -H.; Sun, K. -X.; Chen, L. -X., ACS Appl. Mater. Interfaces. 2016, 8, 10201-10211.
[39] Ramya, A. N.; Joseph, M. M.; Nair, J. B.; Karunakaran, V.; Narayanan, N.; Maiti, K. K., ACS Appl. Mater. Interfaces. 2016, 8, 10220-10225.
[40] Lin, K. -Q.; Yi, J.; Hu, S.; Liu, B. -J.; Liu, J. -Y.; Wang, X.; Ren, B., J. Phys. Chem. 2016.
[41] Xia, Y. -Q.; Wu, Y. -W.; Hang, T.; Chang, J. -M.; Li, M., Langmuir. 2016, 32, 3385-3392.
[42] Zaccaria, R. P.; Bisio, F.; Das, G.; Maidecchi, G.; Caminale, M.; Vu, C. D.; De Angelis, F.; Di Fabrizio, F.; Toma, A.; Canepa, M., ACS Appl. Mater. Interfaces. 2016, 8, 8024-8031.
[43] He, Y.; Wang, Y.; Yang, X.; Xie, S. -B.; Yuan, R.; Chai, Y. -Q., ACS Appl. Mater. Interfaces. 2016, 8, 7683-7690.
[44] Pérez, L. A.; Dalfovo, M. C.; Troiani, H.; Soldati, A. L.; Lacconi, G. I.; Ibañez, F. J., J. Phys. Chem. 2016, 120, 8315-8322.
[45] Giordano, M. C.; Foti, A.; Messina, E.; Gucciardi, P. G.; Comoretto, D. A.; Buatier de Mongeot, F., ACS Appl. Mater. Interfaces. 2016, 8, 6629-6638.
[46] Nien, L. -W.; Chien, M. -H.; Chao, B. -K.; Chen, M. -J.; Li, J. -H., J. Phys. Chem. 2016, 120, 3448-3457.
[47] Niu, C. -Y.; Zou, B. -F.; Wang, Y. -Q.; Cheng, L.; Zheng, H. -H.; Zhou, S. -M., Langmuir. 2016, 32, 858-863.
[48] Yockell-Lelièvre, H.; Lussier, F.; Masson, J. -F., J. Phys. Chem. 2015, 119, 28577, 28585.
[49] Liu, L. -Q.; Chen, D. -P.; Ma, H. -L.; Liang, W. -Z., J. Phys. Chem. 2015, 119, 27609-27619.
[50] Bańkowska, M.; Krajczewski, J.; Dzięcielewski, I.; Kudelski, A.; Weyher, J. L., J. Phys. Chem. 2016, 120, 1841-1846.
[51] Soliveri, G.; Ardizzone, S.; Yüksel, S.; Cialla-May, D.; Popp, J.; Schubert, U. S.; Hoeppener, S., J. Phys. Chem. 2016, 120, 1237-1244.
[52] Yan, Z. -X.; Zhang, Y. -L.; Wang, W.; Fu, X. -Y.; Jiang, H. -B.; Liu, Y. -Q.; Verma, P.; Kawata, S.; Sun, H. -B., ACS Appl. Mater. Interfaces. 2015, 7, 27059-27065.
[53] Khaywah, M. Y.; Jradi, S.; Louarn, G.; Lacroute, Y.; Toufaily, J.; Hamieh, T.; Adam, P. -M., J. Phys. Chem. 2015, 119, 26091-26100.
[54] Paul, A. M.; Fan, Z.; Sinha, S. S.; Shi, Y.; Le, L.; Bai, F.; Ray, P. C., J. Phys. Chem. C. 2015, 119, 23669-23675.
[55] Turkevich, J.; Kim, G., Science. 1970, 169(3948), 873-879.
[56] Kukushkin, V. I.; Van Kov, A. B.; Kukushkin, I. V., JEPT. Lett. 2013, 98, 2, 72-77.
[57] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Nature. Lett. 1997, 389, 827-829.
[58] Eral, H. B.; Mampallil Augustine, D.; Duits, M. H. G.; Mugele, F., Soft Matter, 2011,7, 4954-4958.
[59] Friederich, A.; Binder, J. R.; Bauer, W., J. Am. Ceram. Soc. 2013, 96(7), 2093-2099.
[60] Peisker, H.; Gorb, S. N., J. Exp. Biol. 2012, 215, 1266-1271.
[61] Leopold, N.; Lendl, B., J. Phys. Chem. B. 2003, 107, 5723-5727.
[62] Lee, P. C.; Meisel, D., J. Phys. Chem. 1982, 86, 3391-3395.
[63] Smith, G. D.; Clark, R. J. H., J. Archaeol. Sci. 2004, 31, 1137-1160.
[64] Clark, R. J. H., J. Mol. Struct. 2007, 834-836, 74-80.
[65] Clark, R. J. H.; Wang, Q.; Correia, A., J. Archaeol. Sci. 2007, 34, 1787-1793.
[66] Bell, I. M.; Clark, R. J. H.; Gibbs, P. J., Spectrochim. Acta A. 1997, 53, 2159-2179.
[67] Osticioli, I.; Mendes, N. F. C.; Nevin, A.; Gil, F. P. S. C.; Becucci, M.; Castellucci, E., Spectrochim. Acta A. 2009, 73, 525-531.
[68] Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A. P.; Chryssoulakis, Y., Spectrochim. Acta A. 1999, 56, 3-18.
[69] Bouchard, M.; Smith, D. C., Spectrochim. Acta A. 2003, 59, 2247-2266.
[70] Brooke, C. J.; Edwards, H. G. M.; Tait, J. K. F., J. Raman Spectrosc. 1999, 30, 429-434.
[71] Brown, K. L.; Clark, R. J. H., Anal. Chem. 2002, 74, 3658-3661.
[72] Brown, K. L.; Clark, R. J. H., J. Raman Spectrosc. 2004, 35, 4-12.
[73] Brown, K. L.; Clark, R. J. H., J. Raman Spectrosc. 2004, 35, 217-223.
[74] Burgio, L.; Clark, R. J. H. J. Raman Spectrosc. 2000, 31, 395-401.
[75] Chaplin, T. D.; Clark, R. J. H.; Beech, D. R., J. Raman Spectrosc. 2002, 33, 424-428.
[76] Clark, R. J. H., J. Mol. Struct. 1995, 347, 417-428.
[77] Burgio, L.; Ciomartan, D. A.; Clark, R. J. H., J. Mol. Struct. 1997, 405, 1-11.
[78] Clark, R. J. H., J. Mol. Struct. 1999, 480-481, 15-20.
[79] Clark, R. J. H., C. R. Chimie, 2002, 5, 7-20.
[80] Burgio, L.; Melessanaki, K.; Doulgeridis, M.; Clark, R. J. H.; Anglos, D., Spectrochim. Acta B. 2001, 56, 905-913.
[81] Clark, R. J. H.; Curri, M. L.; Laganara, C., Spectrochim. Acta A. 1997, 53, 597-603.
[82] Clark, R. J. H.; Weerd, Jaap. Van der, J. Raman Spectrosc. 2004, 35, 279-283.
[83] Catalano, I. M.; Genga, A.; Laganara, C.; Laviano, R.; Mangone, A.; Marano, D.; Traini, A., J. Archaeol. Sci. 2006, 1-9.
[84] Colomban, Ph.; March, G.; Mazerolles, L.; Karmous, T.; Ayed, N.; Ennabli, A.; Slim, H., J. Raman Spectrosc. 2003, 34, 205-213.
[85] Colomban, Ph.; Sagon, G.; Faurel, X., J. Raman Spectrosc. 2001, 32, 351-360.
[86] Colomban, Ph.; Treppoz, F., J. Raman Spectrosc. 2001, 32, 93-102.
[87] Colomban, Ph.; Truong, C., J. Raman Spectrosc. 2004, 35, 195-207.
[88] Colomban, Ph.; Liem, N. Q.; Sagon, G.; Tinh, H. X.; Hoành, T. B., J. Cult. Herit. 2003, 4, 187-197.
[89] Derbyshire, A.; Withnall, R., J. Raman Spectrosc. 1999, 30, 185-188.
[90] Edwards, H. G. M.; Drummond, L.; Russ, J., Spectrochim. Acta A. 1998, 54, 1849-1856.
[91] Edwards, H. G. M.; Drummond, L.; Russ, J., J. Raman Spectrosc. 1999, 30, 421-428.
[92] Edwards, H. G. M.; Ellis, E.; Farwell, D. W.; Janaway, R. C., J. Raman Spectrosc. 1996, 27, 663-669.
[93] Edwards, H. G. M.; Farwell, D. W., Spectrochim. Acta A. 1995, 51, 2073-2081.
[94] Edwards, H. G. M.; Farwell, D. W.; Heron, C. P.; Croft, H.; David, A. R., J. Raman Spectrosc. 1999, 30, 139-146.
[95] Edwards, H. G. M.; Farwell, D. W.; Quye, A., J. Raman Spectrosc. 1997, 28, 243-249.
[96] Edwards, H. G. M.; Newton, E. M.; Russ, J., J. Mol. Struct. 2000, 550-551, 245-256.
[97] Edwards, H. G. M.; Jorge Villar, S. E.; David, A. R.; de Faria, D. L. A., Anal. Chim. Acta. 2004, 503, 223-233.