簡易檢索 / 詳目顯示

研究生: 瑞迪
DONALA JANREDDY
論文名稱: 利用金屬和非金屬催化劑合成具有生物活性之分子
SYNTHESIS OF BIOACTIVE MOLECULES BY METAL AND NON-METAL CATALYSIS
指導教授: 姚清發
Yao, Ching-Fa
學位類別: 博士
Doctor
系所名稱:
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 376
中文關鍵詞: 金屬及非金屬吲哚環1,2,3-三唑
英文關鍵詞: METAL AND NON-METAL, NAPHTHALENES, INDOLE NUCLEUS, 1,2,3-TRIAZOLES
論文種類: 學術論文
相關次數: 點閱:361下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的內容被分為三個章節,第一章節可被細分為三個部分,A部分主要是對於吲哚(indole)環的反應進行概述、分類及合成方法和相關文獻的說明。B部分的標題為「Carbazolones和2,3-disubstituted Indoles的簡易方法」,內容是介紹一個利用Fe/AcOH催化分子內還原3-hydroxy-2-(2-nitrophenyl)enones的含氮雜環化反應。C部分介紹2,3-disubstituted Indole在PdCl2催化下進行2-N-unprotected-2-alkynylanilines和多樣缺電子烯類的級聯反應(cascade reaction)。

    第二章節介紹利用過渡金屬催化2-arylbenzoxazole衍生物和1,2,3-triazoles的合成。第二章節可被細分為三個部分,A部分主要是對於2-arylbenzoxazole衍生物進行概述、分類及合成方法的說明。此部分也對1,2,3-triazoles衍生物進行概述、分類及以azide和alkenes合成的方法說明。B部分介紹透過銅催化C-N和C-O鍵形成級聯反應,使2-arylbenzoxazole衍生物在芳香基團的鄰位上有胺或醯胺官能基的有效合成方法。C部分介紹一個新穎方法為透過銅催化在有氧環境下進行azide-alkene的氧化環加成反應。

    第三章節介紹利用非金屬、過渡金屬催化合成naphthalene及其多元性導向的應用。第三章節可被細分為三個部分。A部分是naphthalene衍生物的概論及其合成方法。B部分描述一個有效率利用碘分子和2-(2-phenylethynyl)-Morita-Baylis-Hillman催化naphthalenes和iodo-substituted isochromene衍生物的合成。而iodo-substituted-derivatives則可以用來進行一連串的耦合反應如用硼酸、活化烯類、炔類分別可進行Suzuki coupling、Heck coupling、Sonogashira reaction。C部分介紹一個以PdCl2催化2-alkenylbenzaldehydes和缺電子烯類在有氧環境下分子間氧化環加成來合成naphthalenes的的有效路徑。

    The content of this dissertation is divided into three parts. The part I is subdivided into three sections. Section A, illustrate the overview, classification and synthetic approaches on ‘indole nucleus’ reactions and related literature review. Section B demonstrate the ‘An Easy Access to Carbazolones and 2,3-Disubstituted Indoles’ by a Fe/AcOH-mediated intramolecular reductive N-heteroannulation of 3-hydroxy-2-(2-nitrophenyl)enones. Section C, describes the synthesis of ‘2,3-disubstituted indoles’ via cascade reaction of 2-N-unprotected-2-alkynylanilines and various electron-deficient alkenes in the presence of PdCl2.
    Part II deals with the synthesis of 2-aryl benzoxazole derivatives and 1,2,3-triazoles by using transition metal catalyzed reactions. Part II is subdivided into three sections. Section A, deals with overview, classification and synthetic approaches of 2-aryl benzoxazole derivatives. This section also describe the overview on 1,2,3- triazole derivatives, classification and synthetic approaches from azide and alkenes. Section B, represents an efficient synthesis of 2-aryl benzoxazole derivatives having an amine or amide functionality in the aryl group at the ortho position via Copper-catalyzed tandem C–N and C–O bond formation. Section C, deals with the novel synthesis of substituted 1,2,3-triazoles via Copper(I)-catalyzed aerobic oxidative azide–alkene cycloaddition.
    Part III deals with the synthesis of naphthalene by using non-metal, transition metal catalyzed reactions and their application towards diversity oriented synthesis. Part III is subdivided into three sections. Section A, deals with overview and synthetic approaches towards naphthalene derivatives. Section B, describes an efficient synthesis of naphthalenes and iodo-substituted isochromene derivatives via reaction of 2-(2-phenylethynyl)-Morita-Baylis-Hillman adducts using molecular iodine. The resulting iodo-substituted-derivatives utilized to couple with a array of boronic acid (Suzuki coupling), activated alkene (Heck coupling) and alkyne (Sonogashira reaction). Section C, demonstrates an efficient synthesis of naphthalenes via PdCl2-catalyzed aerobic oxidative intermolecular cycloaddition between 2-alkenyl benzaldehydes and electron-deficient terminal alkenes.

    Abbreviations i-iv Abstract v-xi Part-I Part-I, Section-A: Overview on “Indole Nucleus” Reactions I.A.1. Introduction to indole nucleus 1 I.A.2. Indole synthesis 2 I.A.3. Indole nucleus synthesis 3 I.A.3.1. Indole nucleus from monofunctionalized arene precursors 4 I.A.3.2. Indole nucleus from bifunctional arene precursors 5 I.A.4. Recent advances in the synthesis of free N-H 2,3-disubstituted indole nucleus through cascade/tandem reactions (from bifunctional arene precursor) 6 I.A.5. References 15 Part-I, Section-B: An Easy Access to Carbazolones and 2,3-Disubstituted Indoles I.B.1. Introduction 21 I.B.2. Review of literature 22 I.B.3. Results and discussion 25 I.B.4. Conclusions 32 I.B.5. Experimental section 33 I.B.6. References 41 Part-I, Section-C: The PdCl2-Catalyzed Sequential Heterocyclization/Michael Addition Cascade in the Synthesis of 2,3-Disubstituted Indoles I.C.1. Introduction 44 I.C.2. Review of literature 44 I.C.3. Results and discussion 48 I.C.4. Conclusions 59 I.C.5. Experimental section 59 I.C.6. References 69 Part-II Part-II, Section-A: Overview on 2-Aryl benzoxazoles and 1,2,3-Triazoles II.A.1. Introduction to 2-aryl benzoxazole 71 II.A.2. Benzoxazole synthesis 72 II.A.2.1. 2-aryl benzoxazole synthesis 72 II.A.2.2. Recent developments in the synthesis of 2-aryl benzoxazoles via transition-metal-catalyzed cyclization of ortho-haloanilides 73 II.A.3. Overview on the synthesis of 1,2,3-triazoles 78 II.A.3.1. Introduction to 1,2,3-triazoles 78 II.A.3.2. 1,2,3-triazole synthesis 78 II.A.3.3. Recent advances in the synthesis of 1,2,3-triazoles 79 via azide- alkene cycloaddition II.A.4. References 83 Part-II, Section-B: One-Pot Tandem Synthesis of 2-Aryl benzoxazole Derivatives via Copper-Catalyzed C–N and C–O Bond Formation II.B.1. Introduction 87 II.B.2. Review of literature 87 II.B.3. Results and discussion 90 II.B.4. Conclusions 100 II.B.5. Experimental section 100 II.B.6. References 113 Part-II, Section-C: Copper (I)-Catalyzed Aerobic Oxidative Azide–Alkene Cycloaddition: An Efficient Synthesis of Substituted 1,2,3-Triazoles II.C.1. Introduction 115 II.C.2. Review of literature 115 II.C.3. Results and discussion 118 II.C.4. Conclusions 124 II.C.5. Experimental section 125 II.C.6. References 135 Part-III Part-III, Section-A: Overview on Naphthalenes III.A.1. Introduction 138 III.A.2. Naphthalene synthesis 140 III.A.3. Recent advances in the synthesis of naphthalene derivatives from o-alkynyl-substituted carbonyl compounds 141 III.A.4. References 146 Part-III, Section-B: Molecular Iodine Mediated Regioselective Switching Reaction for the Construction of Naphthalenes and Iodo-Substituted Isochromenes from 2-(2-phenylethynyl)-Morita-Baylis-Hillman Adducts III.B.1. Introduction 149 III.B.2. Review of literature 149 III.B.3. Results and discussion 150 III.B.4. Conclusions 161 III.B.5. Experimental section 161 III.B.6. References 169 Part-III, Section-C: PdCl2-Catalyzed Aerobic Oxidative Intermolecular [4+2] Cycloaddition Reaction between 2-Alkynyl Benzaldehydes and Electron-Deficient Terminal Alkenes: An Efficient Synthesis of Naphthalenes III.C.1. Introduction 173 III.C.2. Review of literature 174 III.C.3. Results and discussion 175 III.C.4. Conclusions 180 III.C.5. Experimental section 181 III.C.6. References 188 X-ray Crystallographic Data 192 1H and 13C NMR Spectral Copies 206 List of Publications 374

    1. Knölker, H.-J. Top Curr Chem. 2005, 244, 115.
    2. Bouaziz, Z.; Nebois, P.; Poumaroux, A.; Fillion, H. Heterocycles 2000, 52, 977. (b) Knölker, H.-J; Reddy, K. R.; Heterocycles 2003, 60, 1049.
    3. Chakraborty, D. P.; Chowdhury, B. K. J. Org. Chem. 1968, 33, 1265.
    4. Li, X.; Vince, R. Bioorg. Med. Chem. 2006, 14, 2944.
    5. Gao, Y.; Shen, D. WO2006044232, 2006.
    6. Romeo, G.; Materia, L.; Pittala, V.; Modica, M.; Salerno, L.; Siracusa, M.; Russo, F.; Minneman, K. P.; Bioorg. Med. Chem. 2006, 14, 5211.
    7. Masaguer, C. F.; Formoso, E.; Raviña, E.; Tristán, H.; Loza, M. I.; Rivas, E.; Fontenla, J. A. Bioorg. Med. Chem. Lett. 1998, 8, 3571–3576. Raviña
    8. Coates, I. H.; Oxford, A. W.; North, P. C.; Miller, T.; Baxter, A. D.; Hammond, K. I. EP 385721, 1990.
    9. Knölker, H.-J.; Reddy, K. R. Occup. Med. State of the Art Rev., in The Alkaloids (Ed. G. A. Cordell), Academic Press, Amster- dam, 2008, vol. 65, pp. 195–383.
    10. (a) Rodriguez, J.-G.; Temprano, F.; Esteban-Calderon, C.; Martinez-Ripoll, M. J. Chem. Soc., Perkin Trans. 1 1989, 2117. (b) Kudzma, L. V. Synthesis 2003, 1661. (c) Xu, D.-Q.; Wu, J.; Luo, S.-P.; Zhang, J.-X.; Wu, J.-Y.; Du, X.-H.; Xu, Z.-Y. Green Chem. 2009, 11, 1239.
    11. (a) Würtz, S.; Rakshit, S.; Neumann, J. J.; Dröge, T.; Glorius, F. Angew. Chem. Int. Ed. 2008, 47, 7230. (b) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303 and references
    cited therein.
    12. Iida, H.; Yuasa, Y.; Kibayashi, C. J. Org. Chem. 1980, 45, 2938. (b) Chen, L.; Yang, S.; Wang, H. Synthesis 1995, 385. (c) Wang, H.; Chou, H.; Chen, L. J. Chin. Chem. Soc. 1995, 42, 593. (d) Knölker, H.-J. Chem. Lett. 2009, 8.
    13. (a) Osuka, A.; Mori, Y.; Suzuki, H. Chem. Lett. 1982, 2031. (b)Yan, S.; Wu, H.; Wu, N.; Jiang, Y. Synlett, 2007, 17, 2699.
    14. Sorensen, U. S.; Pombo-Villar, E. Helv. Chim. Acta 2004, 87, 82.
    15. (a) Scott, T. L.; Söderberg, B. C. G. Tetrahedron Lett. 2002, 43, 1621. (b) Scott, T. L.; Söderberg, B. C. G. Tetrahedron 2003, 59 6323.
    16. Scott, T. L.; Burke, N.; Martίnez, G. C.; Söderberg, B. C. G. Tetrahedron 2007, 63, 1183.
    17. (a) Bunce, R. A.; Nammalwar, B. J. Heterocycl. Chem. 2009, 46, 172. (b) Yun, X. L.; Bi, W. Y.; Huang, J. H.; Liu, Y.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Tetrahedron Lett. 2012, 53, 5076. (c) Ban, X.; an, Y.; Lin, Y.; Wang, S.; Du, Y.; Zhao, K. Org. Biomol. Chem. 2012, 10, 3606.
    18.(a) Waterman, H. C.; Vivian, D. L. J. Org. Chem. 1949, 14, 289. (b) Weber, E. J. Environ. Sci. Technol. 1996, 30, 716.
    19. (a) Aiello, E.; Dattolo, G.; Cirrincione, G. J. Chem. Soc. Perkin Trans. 1 1981, 1.(b) Kamal, A.; Reddy, B. S. P.; Reddy, B. S. N. Tetrahedron Lett. 1996, 37, 2281.( c) Basavaiah, D.; Rao, J. S.; Reddy, J. R. J. Org. Chem. 2004, 69, 7379.(d) Jonsson, S.; Arribas, C. S.; Wendt, O. F.; Siegel, J. S.; Warnmark, K. Org. Biomol. Chem. 2005, 3, 996. (e) Basavaiah, D.; Raju, J.; Rao, J. S. Tetrahedron Lett. 2006, 47, 73. (f) Lee, K. Y.; Lee, Y.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 143.
    20. (a) Ramesh, C.; Kavala, V.; Raju, B. R.; Kuo, C.W.; Yao, C.F. Tetrahedron Letts. 2009, 50, 4037. (b) Ramesh, C.; Kavala, V.; Raju, B. R.; Kuo, C.W.; Yao, C.F. Eur. J. Org. Chem, 2010, 51, 5234.
    21. Solé, D.; Bosch, J.; Bonjoch, J.; Tetrahedron 1996, 52, 4013.
    22. (a) Carruthers, W.; Evans, N. J. Chem. Soc. Perkin Trans. 1 1974, 1523.(b) Campo, M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616. (c) Boussard, M.-F.; Truche, S.; Rous- seau-Rojas, A.; Briss, S.; Descamps, S.; Droual, M.; Wierzbicki, M.; Ferry, G.; Audinot, V.; Delagrange, P.; Boutin, J. A. Eur. J. Med. Chem. 2006, 41, 306.
    23. (a) Wong, A.; Kuethe, J. T.; Davies, I. W. J. Org. Chem. 2003, 68, 9865. (b) Reboredo, F. J.; Treus, M.; Estévez, J. C.; Castedo, L.; Estévez, R. J. Synth. Lett. 2002, 999. (c) Somei, M.; Inoue, S.; Tokutake, S.; Yamada, F.; Kaneko, C. Chem. Pharm. Bull. 1981, 29, 726. (d) Somei, M. Chem. Pharm. Bull. 1986, 34, 4109. (e) Mousseron-Canet, M.; Boca, J.-P. Bull. Soc. Chim. Fr. 1967, 1296. (f) Coutts, R. T.; Wibberley, D. G. J. Chem. Soc. 1962, 4610.
    24. (a) Jonosik, T.; Bergman, J. Tetrahedron 1999, 55, 2371. (b) Sanchez, C.; Mendez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007. (c) Janosik, T.; Wahlstrêm, N.; Bergman, J.; Tetrahedron 2008, 64, 9159.
    25. (a) Fresneda, P. M.; Molina, P.; Delgado, S.; Tetrahedron Lett. 1999, 40, 7275. (b) Fresneda, P. M.; Molina, P.; Delgado, S. Tetrahedron 2001, 57, 6197. (c) Bergman, J.; Engqvist, R.; Stalhandske, C.; Wallberg, H. Tetrahedron 2003, 59, 1033. (d) Miki, Y.; Kuromatsu, M.; Miyatake, H.; Hamamoto, H. Tetrahedron Lett. 2007, 48, 9093.

    下載圖示
    QR CODE