簡易檢索 / 詳目顯示

研究生: 游正一
Yu, Cheng-Yi
論文名稱: 脈衝雷射製備二氧化鈦的特性及光催化性能之研究
Characteristics and Photocatalytic Performance of Titanium Dioxide Prepared by Pulsed Laser
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 脈衝雷射二氧化鈦XRD金紅石銳鈦礦光觸媒
英文關鍵詞: anatase, photocatalytic, plused laser, titanium oxide
DOI URL: https://doi.org/10.6345/NTNU202202216
論文種類: 學術論文
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用Nd:YAG脈衝雷射在鈦金屬基材上製備二氧化鈦(TiO2)材料。藉由改變雷射功率及脈衝時間,獲得不同比例的銳鈦礦(anatase)與金紅石(rutile)的TiO2。材料的表面形貌、結晶型態、反射率以及親疏水特性分別使用光學顯微鏡、SEM電子顯微鏡、X光粉末繞射分析儀(XRD)、UV-VIS-NIR光譜儀以及接觸角量測儀進行量測與分析。最後藉由上述量測與分析結果搭配甲基藍(MB)光催化降解實驗選出最佳的製程參數。研究結果顯示,試片表層依據不同脈衝功率出現不同型態的裂痕。低功率條件下的試片表面出現黃、藍、紅等多種顏色,高功率試片則呈現灰色。XRD分析發現試片表層主要含有anatase、rutile與TiN等三種結晶型態的成分。所有試片表面最大反射率發生在波長310 nm。各試片在CIE 1931色度座標中的(x, y)座標差異很小,y軸變化率會隨著脈衝時間的增加而逐漸下降的趨勢。不同照射波長對於試片表面照射前後之水滴接觸角度並無明顯變化。照光波長380 nm情況下多數試片的MB降解率明顯高於鈦金屬基材,然而在413 nm與460 nm照射之下則差異較小。照光波長在380 nm、413 nm以及460 nm的最高MB降解率分別為18.7%、15.1%以及9.8%降解率。所有波長中MB降解率越高其anatase重量比率也越高;rutile在380與413 nm波長中的MB降解率越高則重量比則是越少,460 nm波長中的MB降解率越高則重量比則是越多;TiN對於MB降解率的影響趨勢則與Rutile相同。380 nm與413 nm照光波長呈現雷射能量在6 mJ到40 mJ區間具有較佳的光催化效果;413 nm與460 nm照光波長則呈現雷射能量在16 mJ到70 mJ具有較佳的可見光光催化效果。

    In this study, titanium dioxide (TiO2) with different proportions of anatase and rutile was prepared on a titanium substrate using Nd: YAG pulsed laser with various laser powers (6-14 W) and pulse durations (1-5 ms). The surface morphology, crystallization, reflectivity, and hydrophilic/hydrophobic properties of the specimen were measured and analyzed using an optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD), UV-VIS-NIR spectrometer, and contact angle measuring instrument. Finally, the optimum process parameters were selected by the above-mentioned measurement and analysis results with methyl blue (MB) photocatalytic degradation experiments. The results showed that the surface of the specimen appeared different types of cracks with various laser powers. The colors of yellow, blue, and red appeared on the surface of the specimen that manufactured using lower laser power, and the colors of gray appeared on the surface of the specimen that manufactured using higher laser power. XRD analysis revealed that the surface of the specimen mainly contained three kinds of crystalline forms such as anatase, rutile and TiN. The maximum reflectivity of the entire specimen surface occurred at a wavelength of 310 nm. The difference on the (x, y) coordinates of the specimen in the CIE 1931 chromaticity coordinates were very small, and the change rate of y-axis will decrease with increasing the pulse duration. There was no significant change in the contact angle of water droplets on the specimen surface before and after irradiation with various irradiation wavelengths. The degradation rate of MB was higher than that of titanium substrate at 380 nm, but the difference was less at 413 nm and 460 nm. The highest degradation rates of MB with irradiation wavelength at 380 nm, 413 nm and 460 nm were 18.7%, 15.1% and 9.8% respectively. The degradation rate of MB increased with increasing the weight ratio of anatase in all irradiation wavelengths, the degradation rate of MB increased with decreasing the weight ratio of rutile in the irradiation wavelength of 380 and 413 nm, but showed the opposite trend in the 460 nm. The effect of TiN on MB degradation rate was the same as that of rutile. The laser energy of 6 to 40 mJ had a better photocatalytic effect in the irradiation wavelength of 380 and 413 nm. The laser energy of 16 to 70 mJ had a preferred visible light photocatalytic effect in the irradiation wavelength of 413 and 460 nm.

    目次 摘要 i Abstract iii 目次 v 表次 viii 圖次 ix 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 1.4研究方法 4 1.5研究架構 5 1.6文獻回顧 6 第二章 理論分析與文獻探討 9 2.1 Nd:YAG雷射原理與系統 9 2.1.1物質與輻射 9 2.1.2雷射光之特性 10 2.1.3雷射基本要素 10 2.1.4雷射之控制參數 12 2.2二氧化鈦介紹 13 2.3亞甲基藍介紹 17 2.4二氧化鈦薄膜製程技術 18 2.4.1溶膠-凝膠法 18 2.4.2燃燒合成法 19 2.4.3濺鍍法 19 2.4.4化學氣相沉積法 19 2.4.5雷射加工法 19 第三章 實驗設計與規劃 21 3.1實驗規劃 21 3.2實驗流程 22 3.3二氧化鈦表層製備 23 3.3.1實驗設備 23 3.3.2基材準備 24 3.3.3製備二氧化鈦材料 25 3.3.4實驗參數設定 27 3.4二氧化鈦表層結構、材質與光學特性分析 29 3.4.1表觀與斷面組織觀察 29 3.4.2材料結晶型態量測 31 3.4.3反射率與顏色定量 33 3.5二氧化鈦表層光催化性能檢測 34 3.5.1接觸角量測 34 3.5.2亞甲基藍降解實驗 36 第四章 結果與討論 39 4.1製程參數對二氧化鈦表層形貌與成分分析結果與討論 39 4.1.1二氧化鈦表層形貌巨觀分析 39 4.1.2 二氧化鈦表層形貌微觀分析 44 4.1.3 材料斷面分析 51 4.1.4材料結晶狀態分析 55 4.2製程參數對二氧化鈦表層光學特性量測結果與討論 63 4.2.1表層材料光學反射特性量測結果 63 4.2.2表層材料CIE 1931標準色度系統分析 69 4.3 製程參數對二氧化鈦表層光催化特性量測結果與討論 71 4.3.1水滴解觸角量測結果 71 4.3.2亞甲基藍分解實驗量測結果 75 4.4 二氧化鈦表層成分對於光催化特性量測結果與討論 79 4.5 最佳光催化性能試片的製程參數與成分的關連性 86 第五章 結論與未來展望 91 5.1結論 91 5.2未來展望 93 參考文獻 95 符號彙整 101 作者簡介 103

    [1]呂宗昕,圖解奈米科技與光觸媒,台北:商周,2003。
    [2] A Pérez del Pino, P Serra and J.L Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Applied Surface Science, vol.197-198, pp.887-890, Sep. 2002.
    [3] L. Lavissea, J.M. Jouvarda, J.P. Gallienb, P. Bergerb, D. Greveya and Ph. Naudyc, “The influence of laser power and repetition rate on oxygen and nitrogen insertion into titanium using pulsed Nd:YAG laser irradiation,” Applied Surface Science, vol. 254, no. 1, pp. 916-920, Dec. 2007.
    [4] L. Lavissea, J.M. Jouva, L. Imhoff, O. Heintz, J. Korntheuer, C. Langlade, S. Bourgeois and M.C. Marco de Lucas, “Pulsed laser growth and characterization of thin films on titanium substrates,” Applied Surface Science, vol. 253, no. 19, pp. 8226-8230, July. 2007.
    [5] I. Shupyk, L. Lavisse, J.-M. Jouvard, M.C. Marco de Lucas, S. Bourgeois, F. Herbst, J.-Y. Piquemal, F. Bozon-Verduraz and M. Pilloz, “Study of surface layers and ejected powder formed by oxidation of titanium substrates with a pulsed Nd:YAG laser beam,” Applied Surface Science, Vol. 255, no. 10, pp. 5574-5578, March. 2009.
    [6] J.H. Lee, G.E. Jang and Y.H. Jun, “Investigation and evaluation of structural color of TiO2 coating on stainless steel,” Ceramics International, vol. 38, no. 1, pp. 661-664, Jan. 2012.
    [7] D.P. Adams, R.D. Murphy, D.J. Saiz, D.A. Hirschfeld, M.A. Rodriguez, P.G. Kotula and B.H. Jared, “Nanosecond pulsed laser irradiation of titanium: Oxide growth and effects on underlying metal,” Surface and Coatings Technology, vol.248, no. 1, pp.38-45, June. 2014.
    [8] Arkadiusz J. Antończak, Łukasz Skowroński, Marek Trzcinski, Vasyl V. Kinzhybalo, Łukasz K. Łazarek and Krzysztof M. Abramski, “Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers,” Applied Surface Science, vol. 325, no.1, pp. 217-226, Jan. 2015.
    [9] Fei Tian, Jing Sun, Jing Yang, Peng Wu, Hong-Li Wang and Xi-Wen Du, “Preparation and photocatalytic properties of mixed-phase titania nanospheres by laser ablation,” Materials Letters, vol.63, no. 27, pp.2384-2386, Nov. 2009.
    [10]鄭慶民,游正一,尤尚邦與鄧敦平,”脈衝雷射製備二氧化鈦的製程參數與結晶型態之研究”,中國機械工程學會第三十三屆全國學術研討會論文集,2016。
    [11] Erhan Akman, Ecem Cerkezoglu, “Compositional and micro-scratch analyses of laser induced colored surface of titanium,” Optics and Lasers in Engineering, vol. 84, pp. 37-43, 2016.
    [12]尤尚邦,“脈衝式雷射輔助氣壓之溝槽無模成形”,國立臺灣師範大學機電工程學系,碩士論文,2014。
    [13]黃俊榮,“AZ型鎂合金微銲接之最適參數研究”,國立台灣師範大學工業教育學系,碩士論文,2005。
    [14] Ramasamy, Sivakumar, “CO2 and Nd:YAG laser beam welding of 6111-T4 and 5754-O aluminum alloys for automotive applications, ” Ohio State University, 1997.
    [15] N.Abdullah and S.K.Kamarudin, “Titanium dioxide in fuel cell technology: An Overview, ”Journal of power Sources, vol.278, no.1, pp. 109-118, 2015.
    [16] Boris K. Vainshtein, Vladimir M. Friedkin and Vladimir L. Indenbom, “Structure of Crystals, ” Springer-Verlag Berlin Heidelberg, 1995.
    [17] Relva C. Buchanan and Taeun Park, “Materials Crystal Chemistry, ”CRC Press, 1997.
    [18] O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide, ” Progress in Solid State Chemistry, vol.32, no.1-2, pp. 33-177, 2004.
    [19] A. Fujishima; K. Hashimoto; T. Watanabe, “TiO2 photocatalysis : fundamentals and applications, ” Tokyo BKC, 1999.
    [20] D. Mardare, G.I. Rusu, “The influence of heat treatment on the optical properties of titanium oxide thin films, ” Materials Letters, vol. 56, no. 3, pp. 210-214, 2002.
    [21] K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami, Y. Kera, “Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere, ” Applied Catalysis B: Environmental, vol. 30, no. 3-4, pp. 429-436, 2001.
    [22] B. Xia, H. Huang, Y. Xie, “Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis, ” Materials Science and Engineering: B, vol. 57, no.2, pp. 150-154, 1999.
    [23] S. S. Watson, D. Beydoun, J. A. Scott, R. Amal, “The effect of preparation method on the photoactivity of crystalline titanium dioxide particles, ” Chemical Engineering Journal, vol. 95, no. 1-3, pp. 213-220, 2003.
    [24] A. Mills, S.K. Lee, A. Lepre, “Photodecomposition of ozone sensitised by a film of titanium dioxide on glass, ” Journal of Photochemistry and Photobiology A: Chemistry, vol. 155, no. 1-3, pp. 199-205, 2003.
    [25] X. Deng, Y. Yue, Z. Gao, “Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations, ” Applied Catalysis B: Environmental, vol. 39, no. 2, pp. 135-147, 2002.
    [26] R.R. Bacsa, J. Kiwi, “Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, ” Applied Catalysis B: Environmental, vol. 16, no. 1, pp. 19-29, 1998.
    [27] D.S. Muggli, L. Ding, “Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics, ” Applied Catalysis B: Environmental, vol. 32, no. 3, pp. 181-194, 2001.
    [28] T. Ohno, K. Sarukawa, K.Tokieda, M. Mastsumueal, “Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, ” Journal of Catalysis, vol. 203, no. 1, pp. 82-86, 2001.
    [29] M. Bekholet, “Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of E. Coli, ” Water Science and Technology, vol. 35, no. 11-12, pp. 95-100, 1997.
    [30] K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima, “Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, ” Environ. Sci. Technol., vol. 32, no. 5, pp. 726-728, 1998.
    [31] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahemann, “Environmental Applications of Semiconductor Photocatalysis, ” Chemical Reviews, vol. 95, no. 1, pp. 69-96, 1995.
    [32]葉雲友,“以射頻磁控濺鍍法製備二氧化鈦光觸媒玻璃之製程參數與特性之研究”,國立臺灣師範大學工業教育學系,碩士論文,2011。
    [33]簡國明,洪長春,吳典熹,王永銘,藍怡平,“奈米TiO2專利地圖及分析”,第2輯,行政院國家科學委員會科技技術資料中心,2003。
    [34]王世敏,許祖勛,傅晶,“奈米材料原理與製備”,五南圖書,台北市,2004。
    [35]閻子峰,“奈米催化技術”,五南圖書,台北市,2004。
    [36]陳光華,鄧金祥,“奈米薄膜技術與應用”,五南圖書,台北市,2005。
    [37]蔡純芳,“以旋鍍法製備二氧化鈦薄膜及特性研究”,國立臺灣師範大學機電工程學系,碩士論文,2015。
    [38]林利,“電沉積法製備氧化鎢薄膜之特性與應用研究”,國立臺灣師範大學工業教育學系,碩士論文,2014。
    [39] X.F. Zhao, X.F. Meng, Z.H. Zhang, L. Liu, D.Z. Jia, “Preparation and Photocatalytic Activity of Pb-doped TiO2 Thin Films, ” Journal of Inorganic Materials, vol. 19, no. 1, pp. 140-146, 2004.
    [40] Z.H. Yuan, J.H. Jia, L.D. Zhang, “Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation, ” Materials Chemistry and Physics, vol. 73, no. 2-3, pp. 323-326, 2002.
    [41]王建義譯,“薄膜工程學”,全華圖書,台北市,2008。
    [42] A. Karuppasamy, “Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering, ” Applied Surface Science, vol. 282, no. 1, pp. 77-83, 2013.
    [43]陳富亮,“最新奈米光觸媒應用技術”,普林斯頓國際有限公司,台北縣,2003。
    [44] JCPDS-ICDD. The International Centre for Diffraction Data 2003, PCPDFWIN 2.4.
    [45] F. Huang, L. Chen, H. Wang, Z. Yan, “Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma”, Chemical Engineering Journal, vol. 162, no. 1, pp. 250-256, 2010.
    [46]林永隆,“探討不同Ag/TiO2 Ag/TiO2之製備方法在亞甲基藍光催化分解的影響”,國立中央大學,碩士論文,2009。
    [47]宏善筑,“應用二氧化鈦奈米結構於光催化之研究”,國立虎尾科技大學,碩士論文,2014。
    [48]余巧琳,“利用溶膠凝膠/水熱法製備二氧化鈦/多壁奈米碳管複合材料並探討其於光催化之應用研究”,逢甲大學,碩士論文,2016。

    無法下載圖示 本全文未授權公開
    QR CODE