簡易檢索 / 詳目顯示

研究生: 鍾季倫
Chi-Lun Chung
論文名稱: RDF與Topic Maps之知識表徵比較研究
A Comparative Study of RDF and Topic Maps in Knowledge Representation
指導教授: 陳昭珍
Chen, Chao-Chen
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 256
中文關鍵詞: 知識表徵資源描述架構主題地圖
英文關鍵詞: knowledge representation, Resource Description Framework, RDF, RDF/XML, Topic Maps, XTM
論文種類: 學術論文
相關次數: 點閱:597下載:92
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網路資源組織近來一直是圖書館界關心的課題之一,但一般來說,圖書館整理的資源向來是以實體為主,具有同質性高、定義嚴謹及穩定等特性,而網路資源相較於圖書館的資源,則具有大量、異質、分散、內容與位址經常改變、且成長快速等特性。不管是圖書館的索引典與詮釋資料架構(schema),或人工智慧領域過去已發展的一些知識表徵語言,例如CycL、Loom、與KIF等,都不見得可用來處理網路環境之半結構式資源。換言之,網路知識表徵需將網路資源的特性納入考量,重新思考與發展合適的處理方法。

    目前「全球資訊網協會」(World Wide Web Consortium,簡稱W3C)及「國際標準組織」(International Organization for Standardization,簡稱ISO)在2000年前後,分別提出「資源描述架構」(Resource Description Framework,簡稱RDF)與「主題地圖」(Topic Maps),作為可應用於網路資源組織與知識表徵方法。RDF與Topic Maps都在表徵人類的知識關聯,雖均可為知識本體(Ontology)提供語意互通的資料模型(data model),但這兩種語言最初發展的目的並不相同,亦有其有各自的交換語法(interchange syntax),因此這兩種語言在知識關聯程度的表徵上到底有何不同、孰強孰弱、及適用範圍為何等,都是本研究想探討的課題。具體而言,本研究試圖回答三個問題:

    一、網路知識表徵之發展趨勢為何?
    二、RDF與Topic Maps在表達概念或主題關聯之語法、所能表達的語意、及應用情境等為何?異同為何?
    三、RDF與Topic Maps在圖書館網路資源組織應用的可行性為何?

    本研究對網路知識表徵之發展趨勢的瞭解是由文獻分析獲得;對RDF與Topic Maps在語法及所能表達的語意之異同,及圖書館網路資源組織的可行性,是藉由對語法的比較,及實際以RDF/XML與XTM對國家圖書館建置的「網路資源選介網站」進行編碼,就呈現結果檢視其異同等方式予以分析;應用情境則是以網路上蒐集到以RDF與Topic Maps實作的網站或系統來從事觀察。

    研究結果主要分三方面,第一部分是有關網路知識表徵之發展趨勢,就巨觀層次而言,網路知識表徵之發展趨勢,在提供有助於人們建立與分享知識,並能協助機器對資源的自動處理,以提昇人們對資訊處理效率的網路環境。第二部分則是有關RDF與Topic Maps在知識表徵能力之比較,結果發現其各自在元素、語法、語意表達、與應用情境等面向不盡相同;此外,在協助資源瀏覽、資訊檢索、資訊過濾、及資源整合等能力亦各有所長。第三部分則嘗試探討RDF與Topic Maps在圖書館網路資源組織應用的可行性,依據實作經驗及呈現結果,認為RDF與Topic Maps在圖書館網路資源組織之應用具可行性,因利用其標記的網站具有分類架構較具彈性與延伸性、可提供使用者由不同面向瀏覽資源,以及有助於分類架構的交換互通、資源整合、與機器的自動處理等原「網路資源選介網站」所缺乏的特性。

    最後,本研究依據研究結果,分別對RDF與Topic Maps在語法、應用、與實作方面提出建議。語法方面,建議限定RDF/XML語法之撰寫方式;對XTM則建議以URI作為指定「主題識別」的方式、修訂關聯不具方向的問題、以及改採支援XML Schema。應用方面,若需同時處理資源描述與主題索引的話,本研究建議兩種作法:一是對資源描述用RDF/XML標記,而對主題之索引用XTM標記,然後另外建立主題與資源的連結;二是完全採用RDF/XML來標記,而展現知識樹的方式就是在RDF/XML中建立表示主題的類,並利用屬性來表現類的階層與相關關係,甚至進一步促進社群內的成員,在表示相同的資源屬性與主題時,都使用相同的描述詞彙(例如Dublin Core)及相同的主題(例如rdf:ID指向相同的URI),以協助資源分享與整合。實作方面,建議使用廣為人知的詞彙,及建立或採用合適的Ontology。

    The Internet resources organization has recently become one of the most important topics in Library and Information Science fields. Generally speaking, resources organized by libraries are presented in physical forms. They are similar in nature, well-defined, and relatively stable. In contrast, resources available on the Internet are massive, heterogeneous, distributed, and proliferative. Besides, their contents and site address change frequently. Both the thesauri and metadata built by libraries and the knowledge representation languages developed by artificial intelligence fields such as CycL, Loom, and KIF cannot be used directly to process semi-structured resources found on the Web. In other words, when generating a Web knowledge representation, all characteristics of Internet resources must be taken into careful consideration before coming up with a feasible solution.

    In order to organize Internet Resources and to represent Web knowledge, World Wide Web Consortium (W3C) and International Organization for Standardization (ISO) respectively proposed the Resource Description Framework (RDF) and the Topic Maps in 2000. Both RDF and Topic Maps were developed to manifest knowledge association of humans and were able to provide a data model of semantic interoperability for ontology. However, the original purposes of these two languages were not identical; each has its own interchange syntax. Therefore, the author believed that it’s necessary to find out the differences in the representation of knowledge association, the strengths and weaknesses, and the application feasibility between RDF and Topic Maps. Specifically, this study tries to answer the following research questions:

    1. What are the trends in the development of the Web knowledge representation?
    2. What are the similarities and differences in syntax for expressing the association of resources or topics between RDF and Topic Maps? What are the semantics these two languages can describe? To what extent can they apply?
    3. When organizing Internet Resources, are RDF and Topic Maps feasible in libraries?

    The author observed trends in the development of Web knowledge representation through literature review. By comparing syntax and analyzing the outcomes of practically applying RDF/XML and XTM in National Central Library’s “Selected Internet Resources Website”, the author explored several similarities and differences in syntax, semantics, and the feasibility of Internet resources organization between RDF and Topic Maps.

    The results of this study are divided into three parts. The first part concerns the trends in the development of the Web knowledge representation. On a macro scale, the author finds the trend of establishing and sharing knowledge among humans and the trend of helping machines manage resources automatically, thereby enhancing the effectiveness of humans handling resources available on the Web. The second part is the comparison of knowledge representation capability between RDF and Topic Maps. The author discovered that there are differences in element, syntax, semantic representation, and application between RDF and Topic Maps. In addition, each one has its own advantages in helping browsing, information retrieval, information filtering, and resource integration. The third part is about the feasibility of the application of RDF and Topic Maps in libraries. The experiments show that Websites written by RDF/XML and XTM are flexible and extensible in classification structure. Besides, the resources in theses Websites can be browsed by different facets. Their interoperability of classification structures, resources integration, and automated processing capabilities of machines are better than Websites not written by these languages.

    Finally, this study offers suggestions for RDF and Topic Maps in syntax, application, and their practical application. On syntax part, it is suggested that the written format of RDF/XML should be limited. There are three suggestions for XTM. First, URI is recommended to serve as a reference for subject identity. Second, XTM should support XML Schema. Finally, the direction of association between topics should be restricted. On application part, the author suggests two ways that can be used to describe resources and index subjects at the same time. One is to use RDF/XML in resource description and to use XTM in subject index, then to build links between subjects and resources. The other is to use RDF/XML completely. In RDF/XML, subject index can be built by establishing classes of subjects and using properties to indicate the hierarchical relationships and correlations between classes. Furthermore, the author encourage members of a community to use identical vocabularies (e.g. Dublin Core) and topics (e.g. “rdf:ID” reference to the same URI) to improve the sharing and integration of resources when having the same resource properties and topics. In practical application, the use of popular vocabularies and appropriate ontology is recommended.

    誌謝 i 摘要 iii 目次 viii 表目次 x 圖目次 xii 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究問題 4 第四節 名詞解釋 4 第二章 文獻分析 8 第一節 知識的意涵、來源與獲取方式 8 第二節 知識表徵的定義、層次與要素 11 第三節 網路知識表徵環境、難題與發展趨勢 18 第四節 電腦科學界的網路知識表徵方法 27 第五節 網路知識表徵語言之比較研究 35 第三章 研究方法與步驟 38 第一節 研究方法 38 第二節 研究對象 40 第三節 研究範圍與限制 40 第四節 研究實施步驟 41 第四章 RDF與Topic Maps之描述與解釋 43 第一節 RDF之描述與解釋 43 第二節 Topic Maps之描述與解釋 95 第三節 小結 135 第五章 RDF與Topic Maps之並列與比較 137 第一節 元素、語法與語意表達之比較 137 第二節 RDF與Topic Maps之關聯描述能力比較 167 第三節 RDF與Topic Maps之應用情境比較 187 第四節 RDF與Topic Maps之實作 189 第五節 小結 211 第六章 結論與建議 214 第一節 結論 214 第二節 建議 222 第三節 進一步研究建議 225 參考書目 226 附錄 234 附錄一 Nicole's First Topic Map XTM 234 附錄二 國家圖書館─網路資源選介RDF/XML 242 附錄三 國家圖書館─網路資源選介XTM 249

    明寰資訊(民91)。XML學習手冊。台北市:碁峰資訊。
    林光龍、葉建華、歐陽彥正(民91)。佛學知識庫之系統建構。在法鼓山中華佛學研究所編,第四屆中華國際佛學會議。上網日期:民93年11月22日。網址:http://www.chibs.edu.tw/exchange/CONFERENCE/4cicob/fulltext/ou_yang.doc
    林光龍、歐陽彥正(民91)。佛教知識庫的建立─以Topic Map 建置玄奘西域行為例。佛教圖書館館訊,32,41-54。
    林信成、歐陽慧、歐陽崇榮(民92)。主題地圖及其在索引典之應用,2003年資訊科技與圖書館學術研討會(頁229-253)。台北淡水。
    邱子恆(民91)。圖書資訊服務業知識資源組織之研究。未出版之博士論文,台北市:國立臺灣大學圖書資訊學研究所。
    柏格(Berger, P.L.) & 樂格曼(Luckmann, T.)(民80)。知識社會學:社會實體的建構(The Social Construction of Reality)(鄒理民譯)。台北市:巨流。(原作1967年出版)
    洪雯柔(民89)。貝瑞岱比較教育研究方法之探析。台北市:揚智文化。
    海拉德(Harold, E.R.)& 明斯(Means, W.S.)(民90)。XML精要總覽(XML in nutshell)(陳牧群、連春雨譯)。台北市:歐萊禮。(原作2001年出版)。
    高顥霖(民92)。比較資源描述架構與主題地圖對詮釋資料處理之適用性研究。未出版之碩士論文,高雄市:國立高雄第一科技大學資訊管理系。
    梁中平、徐千惠(民86)。取SGML之長,補HTML之短─新一代標示語言XML。資訊應用導航CALS季刊,1,18-26。轉引自高顥霖(民92)。比較資源描述架構與主題地圖對詮釋資料處理之適用性研究。未出版之碩士論文,高雄市:國立高雄第一科技大學資訊管理系。
    陳雪華(民92)。知識的種類和來源。上網日期:民93年12月8日。網址:http://ceiba3.cc.ntu.edu.tw/course/cb9879/92.03.06-1.pdf
    陳嵩榮(民88)。SGML、XML、RDF文件標準比較與Metadata資料模式設計。未出版之碩士論文,台北縣:輔仁大學圖書資訊學研究所。
    Ahmed, K.(2002). Introducing topic maps: A powerful, subject-oriented approach to structuring sets of information. XML Journal, 3(10). Retrieved Aug. 6, 2004, from www.sys-con.com/xml/articleprint.cfm?id=507
    ArborText(n.d.). XML for managers. Retrieved Aug. 6, 2004, from http://itpapers.news.com/abstract.aspx?compid=2580&docid=65202
    Beckett, D.(Ed.).(2004). RDF/XML syntax specification(revised). W3C recommendation 10 February 2004. Retrieved Sept. 22, 2004, from http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
    Berners-Lee, T.(2000). Semantic Web–XML2000. Retrieved July 23, 2004, from http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
    Berners-Lee, T.(2001). The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Retrieved Aug. 1, 2004, from http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
    Berners-Lee, T., Hendler, J., & Lassila, O.(2002). The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Retrieved Nov. 21, 2004, from http://cms.brookes.ac.uk/modules/notes/112_SemWeb.pdf
    Best, J.B.(1986). Cognitive Psychology. New York: West Publishing.
    Biezunski, M.(2003). Introduction to the Topic Maps paradigm. In J. Park & S. Hunting(Eds.), XML Topic Maps: Creating and using Topic Maps for the Web (pp. 17-30). Boston: Addison-Wesley.
    Bingi, R., Khazanchi, D., & Yadav, S.B.(1995). A framework for the comparative analysis and evalution of knowledge representation schemes. Information Processing & Management, 31(2), 233-247.
    Brachmen, R.J.(1979). On the epistemological status of semantic networks in N.V. Findler(Ed.), Associative networks: Representation and use of knowledge by computers. Academic, New York, pp. 3-50, as cited in Sowa, J.F.(2000). Knowledge representation: Logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole.
    Brickley, D. & Guha, R.V.(Eds.).(2004). RDF vocabulary description language 1.0: RDF Schema. W3C recommendation 10 February 2004. Retrieved Sept. 20, 2004, from http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
    Broekstra, J., Kampman, A., & van Harmelen, F.(2003). Sesame: A generic architecture for storing and querying RDF and RDF Schema. In J. Davies, D. Fensel & F. van Harmelen(Eds.), Towards the Semantic Web: Ontology-driven knowledge management(pp.71-89). New York: John Wiley & Sons.
    Broughton, V.(2001). Faceted classification as a basis for knowledge organization in a digital environment: The bliss bibliographic classification and the creation of multi-dimensional knowledge structures. New Review of Hypermedia and Multimedia, 7, 67-102, as cited in Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Clark, K.G.(Ed.).(2005). RDF Data Access Use Cases and Requirements. Retrieved May 12, 2005, from http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/
    Cleverdon, C.(1967). The Cranfield tests on index language devices. ASLIB Proceedings, 19(6), 173-194.
    Davenport, T.H. & Prusak, L.(1998). Working knowledge: How organization manage what they know. Boston, Mass.: Harvard Business School.
    Davis, R., Shrobe, H., & Szolovits, P.(1993). What is a knowledge representation? AI Magazine, 14(1), 17-33. Retrieved Jun. 24, 2004, from http://medg.lcs.mit.edu/ftp/psz/k-rep.html
    DCMI Usage Board.(2005). DCMI metadata terms. Retrieved March 4, 2005, from http://dublincore.org/documents/2005/01/10/dcmi-terms/
    de Graauw, M.(2002). Business Maps: The interoperability Topic Map. Retrieved May 15, 2005, from http://www.marcdegraauw.com/itm/
    Ding, Y., Fensel, D., Klein, M., & Omelayenko, B.(2002). The Semantic Web: Yet another hip? Data & Knowledge Engineering, 41(2002), 205-227.
    Ellis, D. & Vasconcelos, A.(2000). The relevance of facet analysis for World Wide Web subject organization and searching. Journal of Internet Cataloging, 2(3/4), 97-114, as cited in Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Fidel, R. & Efthimiadis, E.N.(1999). Web searching behavior of aerospace engineers. Proceedings of SIGIR’99, 319-320, as cited in Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Fidel, R., Davies, R.K., Douglass, M.H., Holder, J.K., Hopkins, C.J., Kushner, E.J., Miyagishima, B.K., & Toney, C.D.(1999). A visit to the information mall: Web searching behaviour of high school students. Journal of the American Society for Information Science, 50(1), 24-37, as cited in Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Garshol, L. M.(2002). What are Topic Maps? Retrieved Aug. 1, 2004, from http://www.xml.com/lpt/a/2002/09/11/topicmaps.html
    Garshol, L.M.(2003). Living with Topic Maps and RDF: Topic maps, RDF, DAML, OIL, OWL, TMCL. Retrieved July 23, 2004, from http://www.idealliance.org/papers/dx_xmle03/papers/02-03-06/02-03-06.html
    Garshol, L.M. & Barta, R.(2003). Topic Map Query Language, Use Cases. Retrieved May 15, 2005, from http://www.isotopicmaps.org/tmql/use-cases.html
    Goble, C.(2003). The Semantic Web: An evolution for a revolution. Computer Networks, 42, 551-556.
    Goel, A.(2004). Basic knowledge representation. Retrieved April, 6, 2005, from http://www.cc.gatech.edu/classes/AY2005/cs6601_fall/basic-kr
    Gruber, T.R.(1993). Toward principles for the design of ontologies used for knowledge sharing. Retrieved July 23, 2004, from http://www.itee.uq.edu.au/~infs4201/1_Ontology/12_OntoEng.pdf
    Gurarino, N.(1995). The ontological level. Retrieved December 4, 2004, from http://www.loa-cnr.it/Papers/OntLev.pdf
    Heflin, J.D.(2001). Towards the Semantic Web: Knowledge representation in a dynamic, distributed environment. Retrieved December 7, 2004, from http://www.cse.lehigh.edu/~heflin/pubs/heflin-thesis-orig.pdf
    Huseman, R.C. & Goodman, J.P.(1999). Leading with knowledge: The nature of competition in the 21st century. Thousand Oaks, Calif.: Sage.
    Hunting, S.(2003). How to start topic mapping right away with the XTM specification. In J. Park & S. Hunting(Eds.), XML Topic Maps: creating and using Topic Maps for the Web (pp. 81-101). Boston : Addison-Wesley.
    ISO/IEC 13250-3: Topic Maps─XML syntax. Retrieved Sept. 20, 2004, from http://www.jtc1sc34.org/repository/0495.htm
    Kamran, A.(1997). Review: Artificial intelligence–Problems and search(what is Artificial Intelligence?). Retrieved April 4, 2005, from http://www.scism.sbu.ac.uk/inmandw/review/ai/review/rev9634.html
    Klyne, G. & Carroll, J.J.(Eds.).(2004). Resource Description Framework(RDF): concepts and abstract syntax.W3C recommendation 10 February 2004. Retrieved Sept. 22, 2004, from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
    Koivunen, M-R. & Miller, E.(2001). W3C Semantic Web activity. Retrieved March 10, 2005, from http://www.w3.org/2001/12/semweb-fin/w3csw
    Kokkelink, S. & Schwnzl, R.(2002). Expressing qualified Dublin Core in RDF/XML. Retrieved March 4, 2005, from http://dublincore.org/documents/2002/05/15/dcq-rdf-xml/
    Lassila, O. & Swick, R.R.(Eds.)(1997). Resource Description Framework (RDF) model and syntax. WD-rdf-syntax-971002. Retrieved Sept. 20, 2004, from http://www.w3.org/TR/WD-rdf-syntax-971002/
    Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Manola, F. & Miller, E.(Eds.).(2004). RDF Primer. W3C recommendation 10 February 2004. Retrieved Sept. 20, 2004, from http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
    McCarthy, J. & Hayes, P.(1969). Some philosophical problems from the standpoint of artificial intelligence in Meltzer, B. & Michie, D.(Eds.), Machine Intelligence, 4, Wiley, New York, pp. 463-502, as cited in Sowa, J.F.(2000). Knowledge representation: Logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole.
    Miller, E.(2004). Semantic Web activity statement. Retrieved March 9, 2005, from http://www.w3.org/2001/sw/Activity
    Miller, E.(1998). An introduction to the Resource Description Framework. D-Lib Magazine. Retrieved Feb. 16, 2005, from http://www.dlib.org/dlib/may98/miller/05miller.html
    Newcomb, S. R.(2003). A perspective on the quest for global knowledge interchange. In J. Park & S. Hunting(Ed.), XML Topic Maps: Creating and using Topic Maps for the Web (pp. 31-50). Boston: Addison-Wesley.
    Newell, A.(1981). The knowledge level.(presidential address). AI Magazine, 2(2), 1-20. Retrieved Aug. 5, 2004, from http://www.lirmm.fr/~cerri/teaching02/newell/knowledge.pdf
    Newman, B.(1999). Tacit vs. explicit and trans-navigational ontologies. Retrieved December 8, 2004, from http://www.3-cities.com/~bonewman/Tacit%20vs%20Explicit%20Trans-Navigational%20Ontologies.pdf
    Nilsson, M.(2001). The Semantic Web: How RDF will change learning technology standards. Retrieved December 26, 2004, from http://cid.nada.kth.se/pdf/CID-157.pdf
    Ogden, C.K. & Richards, I.A.(1923). The meaning of meaning, Harcourt, Brace, and World, New York, 8th ed., 1946, as cited in Sowa, J.F.(2000). Knowledge representation: Logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole.
    Ontopia(2004). The ontopia omnigator–User’s guide. Retrieved Aug. 3, 2004, from http://www.ontopia.net/omnigator/docs/navigator/userguide.html
    Pepper, S.(2002). Ten theses on Topic Maps and RDF. Retrieved Sept. 23, 2004, from http://www.ontopia.net/topicmaps/materials/rdf.html
    Pepper, S. & Moore, G..(Eds.).(2001). XML Topic Maps ( XTM ) v1.0. Retrieved Aug. 3, 2004, from http://www.topicmaps.org/xtm/1.0/
    Pilsk, S., McIntyre-Colby, S., Andrew, P.G.., & Wilson, A.(2002). Organizing corporate knowledge: The ever-changing role of cataloging. Information Outlook, 6(4), 30-34, 37-40, as cited in Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Polanyi, M.(1966). The tacit dimension. New York: Doubleday & Co, as cited in Newman, B.(1999). Tacit vs. explicit and trans-navigational ontologies. Retrieved December 8, 2004, from http://www.3-cities.com/~bonewman/Tacit%20vs%20Explicit%20Trans-Navigational%20Ontologies.pdf
    Powers, S.(2003). Practical RDF. CA: O’Reilly & Associates.
    Ranganathan, S.R.(1967). Prologomena to library classification, 3rd ed. Bombay: Asia Publishing House, as cited in Kwasnik, B.H.(1999). The role of classification in knowledge representation and discovery. Library Trends, 48(1), 22-47.
    Rath, H. H.(2003). The Topic Maps handbook. v1.1 Retrieved Aug. 9, 2004, from http://www.empolis.com/downloads/empolis_TopicMaps_Whitepaper20030206.pdf
    Rich, E. & Knight, K.(1991). Artificial intelligence(2nd ed.). New York: McGraw-Hill, as cited in Kamran, A.(1997). Review: Artificial intelligence–Problems and search (what is Artificial Intelligence?). Retrieved April 4, 2005, from http://www.scism.sbu.ac.uk/inmandw/review/ai/review/rev9634.html
    Salton, G..(1972). A new comparison between conventional indexing (MEDLARS) and Automatic Text Processing(SMART). Journal of the American Society for Information Science , 23(1), 75-84.
    Sowa, J.F.(2000). Knowledge representation: Logical, philosophical, and computational foundations. Pacific Grove: Brooks/Cole.
    Stojanovic, L., Staab, S., & Studer, R.(2001). eLearning based on the Semantic Web. Retrieved December 26, 2004, from http://www.aifb.uni-karlsruhe.de/WBS/Publ/2001/WebNet_lstsstrst_2001.pdf
    Tanaka, M., Aoyama, N., Sugiura, A., & Koseki, Y.(1993). Integration of multiple knowledge representation for classification problems. Proceedings of the 1993 IEEE International conference on tools with AI. Retrieved March 18, 2005, from IEEE/IEE Electronic Library database.
    van Harmelen, F. & Fensel, D.(1999). Practical Knowledge Representation for the Web. Retrieved December 7, 2004, from http://www.cs.vu.nl/~frankh/postscript/IJCAI99-III.html
    Vatant, B.(2003). Topic Maps from representation to identity: Conversation, names, and published subject indicators. In J. Park & S. Hunting(Ed.), XML Topic Maps: Creating and using Topic Maps for the Web (pp. 67-79). Boston: Addison-Wesley.
    Wheatley, A. & Armstrong, C.J.(1997). Metadata, recall, and abstracts: Can abstracts ever be reliable indicators of document value? ASLIB Proceedings, 49(8), 206-213, as cited in Louie, A. J., Maddox, E.L., & Washington, W.(2003). Using faceted classification to provide structure for information architecture. Retrieved Nov. 24, 2004, from http://depts.washington.edu/pettt/presentations/conf_2003/IASummit.pdf
    Wikipedia(2004a). Knowledge representation. Retrieved Sept. 28, 2004, from http://wikipedia.lotsofinformation.com/wikipedia/index.php?title=Knowledge_representation
    Wikipedia(2004b). Ontology (computer science). Retrieved Sept. 28, 2004, from http://wikipedia.lotsofinformation.com/wikipedia/index.php?title=Ontology_(computer_science)
    Winston, P. H.(1984). Artificial Intelligence(2nd ed.). Reading, Mass.: Addison-Wesley.

    QR CODE