簡易檢索 / 詳目顯示

研究生: 吳培宇
PEI-YU WU
論文名稱: 一維多層結構光學性質應用與分析
Application and Analysis of Optical Properties in One-dimensional Multilayer Structures
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 51
中文關鍵詞: 受抑全內反射電漿體光子晶體分束器有效電漿頻率
英文關鍵詞: FTIR, PPC, BS, Effective plasma frequency
論文種類: 學術論文
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們研究了在兩個不同的一維多層結構的光學性質。在第一種結構中,我們利用受抑全內反射(FTIR)的原理來設計一個50/50分束器。我們考慮的層狀結構是一個空氣層被夾在兩個高折射率層中,在這種結構中的分束器為入射波的角度、空氣層的厚度及入射波極化的函數,利用這些關鍵條件來設計分析。在第二種結構中,我們考慮的磁化電漿體光子晶體(PPC)。 在TM波模式下,我們探討了磁化電漿體光子晶體的有效電漿頻率,得到有效電漿頻率為靜態磁場、入射波角度、介質層的厚度、電漿層厚度的函數,利用這些函數來進行分析研究。

    In this thesis, we study the optical properties in two different one-dimensional multilayer structures. In this first structure, we use the frustrated total internal reflection (FTIR) to design a 50/50 beam splitter. We consider the structure where a air layer is sandwiched by two high-index layers. The design analysis for this beam splitter is made as a function of angle of incidence, thickness of air gap, and the polarization of incident wave. Some critical conditions for this design are given. In the second structure, we consider a magnetized plasma photonic crystal (PPC). Under the TM mode, we investigate the effective plasma frequency for the PPC. The effective plasma frequency is investigated as a function of the static magnetic field, the angle of incidence, the thickness of dielectric layer, and the thickness of the plasma layer.

    第 一 章 簡介 1 1-1 光子晶體的由來 1 1-2 研究動機 3 1-3 論文概述 4 REFERENCES 4 第二章 理論方法 6 2-1 邊界條件 6 2-2 單層轉移矩陣 8 2-3 多層轉移矩陣 10 2-4 反射率及透射率 12 2-5 能帶結構 13 第三章 藉由受抑全內反射於分束器的設計分析 19 3-1簡介 19 3-2基本方程 21 3-3數值結果與討 24 50/50分光鏡(BS)-間隙厚度 24 50/50分光鏡(BS) - 判定波長 27 50/50分光鏡(BS) - 判定入射角 29 3-4 結論 30 REFERENCES 30 第四章 一維磁化電漿光子晶體之光子帶隙特性研究 33 4-1簡介 33 4-2基本方程 35 4-3數值結果與討論 39 4-4 結論 48 REFERENCES 49 第五章 結論 51

    第 一 章
    簡介
    REFERENCES
    1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, NJ, 1995, http://ab-initio.mit.edu/book/.
    4.  J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes." Phil. Mag. 26, 256-265. (1888)
    5. A. Sharkawy, D. Pustai, S. Shi, D. W. Prather, “High Transmission through Waveguide Bends by Use of Polycrystalline Photonic-Crystal Structures,” Opt. Lett., vol. 28, p. 1197, 2003.
    6. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos,“High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. vol.7 7, p. 3787, 1996.
    7. C. C. Chen, Y. L. Tsai, C. L. Hsu, J. Y. Chang, “Propagation Loss Reduction of Photonic Crystal Slab Waveguides by Microspheres,” Opt. Express, vol. 12, p.3934, 2004.
    8. C. C . Chen, H. D. Chien, P. G. Luan,“Photonic Crystal Beam Splitters,”Appl. Opt. vol. 43, p. 6188, 2004.
    9.  T. A. Birks, J. G. Knight, P. S. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., 22(13),961~963(1997)
    10. V. P. Bykov, "Spontaneous emission in a periodic structure." Sov. Phys. JETP 35, 269-273 (1972)
    11. V. P. Bykov, "Spontaneous emission from a medium with a band spectrum." Sov. J. Quant. Electron. 4, 861-871 (1975)
    12. Yablonovitch, Gritter, Leung, Phys Rev Lett 67 (17) 2295-2298 (1991)
    13. Krauss TF, DeLaRue RM, Brand S "Two-dimensional photonic-bandgap structures operating at near infrared wavelengths" NATURE vol. 383 pp.699-702 (1996)

    第三章
    藉由受抑全內反射於分束器的設計分析
    REFERENCES
    1. Orfanidis, S. J., Electromagnetic Waves and Antennas, RutgerUniversity, 2008, www.ece.rutgers.edu/ orfanidi/ewa.
    2. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons,Singapore, 1991.
    3. Zhu, Y., C. Yao, J. Chen, and R. Zhu, \Frustrated total internal reflection evanescent switching," Optics Laser Technol., Vol. 31,539-542, 1999.
    4. Mossman, M. A, V. H. Kwong, and L. A. Whitehead, \A novel reflective image display using total internal reflection," Displays,Vol. 25, 215-221, 2004.
    5. Li, L. and J. A. Dobrowolski, \High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle," Appl. Opt., Vol. 39, 2754, 2000.
    6. McCormick, F. B., F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian,\Experimental investigation of a free-space optical switching network by using symmetric self- electro-opticeffect devices," Appl. Opt., Vol. 31, 5431-5446, 1992.
    7. Ojima, M., A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, \Compact magnetooptical disk for coded data storage," Appl. Opt., Vol. 25, 483-489, 1986.
    8. Kunstmann, P. and H.-J. Spitschan, \General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun., Vol. 4, 166-168, 1971.
    9. Azzam, R. M. A. and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1987.
    10. Wu, C.-J., T.-J. Yang, and S.-J. Chang, \Analysis of tunable multiple-filtering property in a photonic crystal containing strongly extrinsic semiconductor," Journal of Electromagnetic Waves and Applications, Vol. 25, Nos. 14-15,2089-2099, 2011.
    11. Wu, C.-J., M.-H. Lee, W.-H. Chen, and T.-J. Yang, \A mid- infrared multichanneled filter in a photonic crystal heterostruc- ture containing negative-permittivity materials," Journal of Elec- tromagnetic Waves and Applications, Vol. 25, No. 10, 1360-1371,2011.
    12. Hsu, H.-T., T.-W. Chang, T.-J. Yang, B.-H. Chu, and C.-J. Wu, \Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.
    13. Dai, X., Y. Xiang, and S. Wen, \Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.
    14. Wu, C.-J. and Z.-H. Wang, \Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
    15. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, \Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
    16. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, \Photonic transmission spectra in one-dimensional flbonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
    17. Kinto-Ramirez, H., M. A. Palomino-Ovando, and F. Ramos- Mendieta, \Photonic modes in dispersive and lossy superlattices containing negative-index materials," Progress In Electromagnet- ics Research B, Vol. 35, 133-149, 2011.
    18. Suthar, B. and A. Bhargava, \Tunable multi-channel filtering using 1-D photonic quantum well structures," Progress In Electromagnetics Research Letters, Vol.27, 43-51, 2011.
    19. Rahimi, H., \Backward tamm states in 1D single-negative metamaterial photonic crystals," Progress In Electromagnetics Research Letters, Vol. 13, 149-159,2010.
    20. Drevko, D. R. and Y. A. Zyuryukin, \Specifics of electromagnetic TE waves splitting and combining under the conditions of frustrated total internal reflection in a thin dielectric layer," Optics and Spectroscopy, Vol. 108, 996-998, 2010.

    第四章
    一維磁化電漿光子晶體之光子帶隙特性研究
    REFERENCES
    1. Wu, C.-J., M.-S. Chen, and T.-J. Yang “Photonic band structure for a superconducting-dielectric superlattice,” Physica C, Vol. 432, 133-139, 2005
    2. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, Terahertz multichanneled filter in a superconducting photonic crystal,”Optics Express, Vol. 18, 27155-27166, 2010.
    3. Wu, C.-J., M.-S. Chen, and T.-J. Yang “Photonic band structure for a superconducting-dielectric superlattice,” Physica C, Vol. 432, 133-139, 2005
    4. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang,“Terahertz multichanneled filter in a superconducting photonic crystal,”Optics Express, Vol. 18, 27155-27166, 2010.
    5. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, “A dielectric omnidirectional reflector,” Science, Vol. 282, 1679-1682, 1998.
    6. Winn. J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Optics Lett., Vol. 23, 1573-1575, 1998.
    7. Bloemera, M. J. and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett., Vol. 72, 1676-1678, 1998.
    8. Choi, Y.-K., Y.-K. Ha, J.-E. Kim, H. Y. Park, K. Kim,“Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Optics Commun., Vol. 230, 239-243, 2004.
    9. Perze-Rodriguez, F., F. Diaz-Monge, N. M. Makarov, R. Marquez-Islas, and B. Flores-Desirena, “Spatial-dispersion effects in one-dimensional photonic crystals with metallic inclusion,“ MSWW 07 Symposium Proceedings, 92-97, 2007.
    10. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta,“Optical properties of a dielectric-metallic superlattice: the complex photonic bands,” Phys. Lett. A, Vol. 326, 273-280, 2004.
    11. Hojo, H. and A. Mase, “Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals,”J. Plasma
    12. S. Laxmi, M. Parmanand, Solid State Communications 138 (2006) 160–164.
    13. S. Liu, W. Hong, N. Yuan, International Journal of Infrared and Millimeter Waves 27 (2006) 403–422.
    14. H. Hojo, A. Mase, Journal of Plasma and Fusion Research SERIES 8 (2009) 477–479.
    15. B. Guo, Physics of Plasmas 16 (2009) 043508-1-6.
    16. B. Guo, Plasma Science and Technology 11 (2009) 18–22.
    17. S. Liu, S. Zhong, S. Liu, Plasma Science and Technology 11 (2009) 14–17.
    18. O. Sakai, T. Sakaguchi, K. Tachibana, Applied Physics Letters 87 (2005) 241505-1-3.
    19. O. Sakai, T. Sakaguchi, K. Tachibana, Journal of Applied Physics 101 (2007) 073304-1-9.
    20. O. Sakai, K. Tachibana, IEEE Transactions on Plasma Science 35 (2007) 1267–1273.
    21. L. Qi, Z. Yang, Progress in Electromagnetics Research 91 (2009) 319–332.
    22. L. Qi, Z. Yang, L. Feng, X. Gao, D. Li, Chinese Physics B 19 (2010) 034210-1-6.
    23. H. Zhang, L. Ma, S. Liu, Optoelectronics Letters 5 (2009) 112–116.
    24. L. Qi, Z. Yang, F. Lan, X. Gao, Z. Shi, Physics of Plasmas 17 (2010)

    無法下載圖示 本全文未授權公開
    QR CODE