簡易檢索 / 詳目顯示

研究生: 羅煌傑
LUO, Huang-Jie
論文名稱: 石墨烯奈米冷卻液應用於熱交換模擬平台與機車引擎性能之研究
Research on Graphene Nano Coolant Applied in Thermal Platform and Engine Performance of four-Stroke Locomotive
指導教授: 呂有豐
Lue, Yeou-Feng
口試委員: 鄧敦平
Teng, Tun-Ping
莫懷恩
Mo, Huai-En
呂有豐
LUE, Yeou-Feng
口試日期: 2021/07/05
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 170
中文關鍵詞: 石墨烯奈米流體冷卻液車輛性能粒狀污染物(PM)排放熱交換模擬平台
英文關鍵詞: Graphene, Nano fluid, Coolant, Automobile performance, Particulate Matter (PM) Emission, Thermal platform
研究方法: 準實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202200633
論文種類: 學術論文
相關次數: 點閱:133下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用市售用改質親水性石墨烯添加到機車原廠冷卻液製備成不同重量百分濃度之石墨烯奈米冷卻液(GrNC),並加入羧甲基纖維素(CMC)作為流體分散劑增加穩定性。分別進行沉降、黏度、比熱、導熱與磨潤等基礎性質實驗,依據實驗數據進行綜合性能分析評比並選出最佳濃度之GrNC後續進行熱交換模擬平台與實車性能之實驗。
    以原廠冷卻液為對照組與GrNC進行比較,沉降試驗為0.01 wt.%與0.07 wt.% GrNC表現較佳,可穩定至10天;黏度試驗0.09 wt.% GrNC改善了20.93 %;比熱試驗0.01 wt.% 與0.07 wt.% GrNC增加1.2 %與3.1 %;導熱試驗GrNC導熱值優於原廠冷卻液,0.01 wt.% 和0.09 wt.% GrNC導熱係數增加28.22 %和36.18 %;磨潤試驗結果GrNC可以減少磨耗量,0.01 wt.%和0.07 wt.% GrNC為最佳,分別改善6.89 %和7.34 %。由前述基礎實驗數據結果進行綜合分數評比,最終選定0.01 wt.%和0.07 wt.% GrNC作為後續熱交換模擬平台與實車性能實驗流體。
    使用GrNC為熱交換模擬平台工作流體來試驗水箱散熱性能與引擎暖車試驗中,與原廠冷卻液進行比較。得到在60 ℃時0.01 wt.%與0.07 wt.% GrNC散熱量提升5.19 %和8.01 %;80 ℃時散熱量分別改善8.42 %與19.51 %。且GrNC能加速流體加熱時間,0.01 wt.%與0.07 wt.% GrNC在60 ℃分別改善6.12 % 和8.74 %;80 ℃時改善7.56 %與8.68 %。
    而在實車性能ECE-40、定速、平路與爬坡試驗中,GrNC與原廠冷卻液比較,在溫度、扭矩、廢氣與PM排放各方面均有改善趨勢。0.01 wt.%與0.07 wt.% GrNC在散熱水溫差平均改善7 % 和16.18 %;機油溫度平均提升5.35 % 和3.52 %;齒輪油溫度平均提升7.8 % 和17 %;平路與爬坡瞬間扭矩GrNC平均提升87 % 和122 %。廢氣排放實驗,與原廠冷卻液比較0.01 wt.%與0.07 wt.% GrNC在HC排放中分別減少15.64 % 和14.46 %;CO減少53.9 % 與50.6 %;CO2增加23.59 % 與34.8 %。在PM總量排放方面,定速時分別減少31.45 % 和8.22 %;平路時分別減少29.76 % 和49.37 %;爬坡時分別減少38.57 % 和45.96 %。

    In the present work, commercial modified hydrophilic graphene was added to a conventional automotive coolant to prepare different weight-percentage concentrations of graphene nano-coolant (GrNC). Carboxymethyl cellulose (CMC) was also added to act as a fluid dispersant for increased stability. Standard property tests were conducted to measure sedimentation, viscosity, specific heat capacity, heat conduction, and tribology. A comprehensive performance evaluation was then carried out based on the collected data in order to select the most optimal GrNC concentrations for further testing through heat transfer simulation platforms and on-road vehicle performance tests.
    A conventional automotive coolant was designated as the control group to compare with the various concentrations of GrNC. Sedimentation testing indicated that GrNC concentrations of 0.01 wt.% and 0.07 wt.% performed better than the control group and were stable for up to 10 days. Viscosity testing indicated 0.09 wt.% GrNC yielded a 20.93 % improvement. Specific heat testing indicated 0.01 wt.% GrNC showed a 1.2 % improvement, while 0.07 wt.% GrNC showed an improvement by 3.1 %. Thermal conductivity tests indicated the thermal conductivity of GrNC was superior to the control group coolant. 0.01 wt.% GrNC showed a 28.22 % increase, while 0.09 wt.% GrNC showed an increase of 36.18 %. Tribological testing indicated 0.01 wt.% and 0.07 wt.% GrNC were the most optimal concentrations for reducing wear, yielding an improvement by 6.89 % and 7.34 %, respectively. The aforementioned test results were evaluated through comprehensive performance analyses, and 0.01 wt.% and 0.07 wt.% GrNC were selected for further studying through heat exchange simulations and on-road vehicle tests.
    GrNC was used as the working fluid in a series of heat exchange simulations to measure both radiator heat dissipation performance and engine warm-up performance. A conventional automotive coolant was designated as the control group. At 60 ℃, the heat dissipation capacity of 0.01 wt.% GrNC was higher by 5.19 %, while 0.07 wt.% GrNC was higher by 8.01 %. At 80 ℃, heat dissipation capacity was higher by 8.42 % and 19.51 %, respectively. Both concentrations were also shown to effectively shorten the time taken for GrNC to reach operating temperatures. At 60 ℃, 0.01 wt.% GrNC showed an improvement by 6.12 %, while 0.07 wt.% GrNC showed an improvement by 8.74 %. At 80 ℃, both yielded an improvement by 7.56 % and 8.68 %, respectively.
    Drive cycle testing ECE-40 under constant speed, on a flat road, and hill climbing were conducted to measure the performance of GrNC and the control group coolant. The results for GrNC revealed that there was an improvement in temperature, torque, exhaust gas, and PM emissions for both concentrations over the control group. On average, 0.01 wt.% GrNC showed a 7 % improvement in heat dissipation water temperature difference, while 0.07 wt.% GrNC showed a 16.18 % improvement. Engine oil temperature for 0.01 wt.% GrNC was on average 5.35 % higher, while 0.07 wt.% was 3.52 % higher. Gear oil temperature for 0.01 wt.% GrNC was higher by an average of 7.8 %, while 0.07 wt.% was higher by an average of 17 %. The instant torque on flat roads and climbing for both 0.01 wt.% and 0.07 wt.% GrNC was higher by an average of 87 % and 122 %, respectively. Exhaust gas emission testing indicated that HC emissions for 0.01 wt.% GrNC were 15.64 % lower than the control group, while 0.07 wt.% GrNC were 14.46 % lower; CO emissions were lower by 53.9 % and 50.6 %; and CO2 emissions were higher by 23.59 % and 34.8 %, all respectively. Total PM emissions were reduced by 31.45 % and 8.22 % at constant speed; 29.76 % and 49.37 % on flat roads; and 38.57 % and 45.96 % while climbing, respectively.

    第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 4 1.4研究方法 4 1.5研究架構 6 第二章 文獻回顧 7 2.1奈米材料(Nanomaterials) 7 2.2石墨烯(Graphene, Gr) 12 2.3奈米流體性質 17 2.3.1布朗運動(Brownian motion) 17 2.3.2石墨烯奈米流體穩定性 21 2.4石墨烯奈米流體應用於引擎散熱系統 25 第三章 實驗方法與裝置 31 3.1石墨烯材料檢測 33 3.2石墨烯奈米冷卻液製備與檢測 35 3.2.1石墨烯奈米冷卻液(GrNC)製備 35 3.2.2 pH值與分散劑檢測 39 3.3 GrNC基礎性質實驗 47 3.3.1黏度量測實驗 47 3.3.2比熱量測實驗 50 3.3.3導熱實驗 54 3.3.4磨潤實驗 58 3.4熱交換模擬平台系統實驗 62 3.5實車性能實驗 67 3.5.1 ECE-40行車型態測試 67 3.5.2定速試驗 67 3.5.3平路試驗 68 3.5.4爬坡試驗 68 3.5.5燃油消耗量試驗 76 3.5.6廢氣與PM試驗 79 第四章 實驗結果與討論 83 4.1石墨烯材料檢測 83 4.2石墨烯奈米冷卻液檢測 85 4.2.1 pH值檢測 85 4.2.2分散劑檢測 87 4.3基礎性質實驗 90 4.3.1黏度實驗 90 4.3.2比熱實驗 91 4.3.3導熱實驗 92 4.3.4磨潤實驗 94 4.3.5基礎性質綜合性能分析 97 4.4熱交換模擬平台實驗 97 4.4.1水箱散熱性能試驗 98 4.4.2引擎暖車性能實驗 104 4.5實車性能實驗 110 4.5.1 ECE-40試驗 110 4.5.2定速試驗 118 4.5.3平路試驗 125 4.5.4爬坡試驗 132 4.5.5燃油消耗量試驗 139 4.5.6廢氣與PM試驗 144 第五章 結論與建議 155 5.1基礎性能 155 5.2熱交換平台與實車性能應用 156 5.3結論與未來展望 158 參考文獻 159 符號釋義 169

    [1] Global Monitoring Laboratory, Earth System Research Laboratories, Jul. 2021. Retrieved from https://gml.noaa.gov/ccgg/trends/
    [2] 行政院環境保護署,空氣品質改善維護資訊網,108年度排放量統計,民109年12月19日。取自:https://air.epa.gov.tw/EnvTopics/AirQuality_12.aspx
    [3] 工業技術研究院,電動機車產業網,民109年12月21日。取自:https://www.lev.org.tw/default.asp
    [4] 交通部公路總局,統計查詢網,民109年12月30日。取自:https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=11100
    [5] T. Ambreen and M. H. Kim,“Influence of particle size on the effective thermal conductivity of nanofluids: Acritical review,” Applied Energy vol. 264, 114684, 2020.
    [6] 維基百科,歐洲汽車廢氣排放標準,民109年12月24日。取自:https://zh.wikipedia.org/wiki/歐洲汽車廢氣排放標準
    [7] S.M. Peyghambarzadeh, S.H. Hashemabadi, M.S. Jamnani, S.M. Hoseini, “Improving the cooling performance of automobile radiator with Al 2O3/water nanofluid,” Applied Thermal Engineering, vol. 31, Issue 10, pp. 1833-1838, 2011.
    [8] S. U. Choi, J. A. Eastman, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” Argonne National Lab., IL (United States), 1995.
    [9] I. W. Almanassra, A. D. Manasrah and U. A. Al-Mubaiyedh, “An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study,” Journal of Molecular Liquids, vol. 304, 111025, 2020.
    [10] H. Wang, X. Li, B. Luo, K. Wei and G. Zeng, “The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study,” Energy, vol. 227, 120483, 2021.
    [11] W. Yu, H. Xie, L. Chen, and Y. Li, “Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid,” Thermochimica Acta, vol. 491, pp. 92-96, July. 2009.
    [12] T. J. Choi, S. H. Kim, S. P. Jang, D. J. Yang and Y. M. Byeon, “Heat transfer enhancement of a radiator with mass-producing nanofluids (EG/water-based Al2O3 nanofluids) for cooling a 100 kW high power system,” Applied Thermal Engineering, vol.180, 115780, 2020.
    [13] J. George, C. Sreeneesh, E. S. Soorej, N. Sreejitha, C. A. Noona and M. S. Sreekanth, “Enhancement of cooling rate using nanofluid and hybrid nanofluid in cooling hot titanium plate,” Materials Today: PROCEEDINGS, vol. 45, Part 4, pp. 3891-3897, 2021.
    [14] X. Li, W. Chen and C. Zou, “The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: A surface modification approach,” Powder Technology, vol. 361, pp. 957-967, 2020.
    [15] S. Mukherjee, P. C. Mishra and P. Chaudhuri, “Thermo-economic performance analysis of Al2O3-water nanofluids — An experimental investigation,” Journal of Molecular Liquids, vol. 229, 112200, 2020.
    [16] S. A. Ahmed, M. Ozkaymak, A. Sözen, T. Menlik and A. Fahed, “Improving car radiator performance by using TiO2-water nanofluid, Engineering Science and Technology,” an International Journal, vol. 21, Issue 5, pp. 996-1005, 2018.
    [17] K. S. Hong, T. K. Hong and H. S. Yang, “Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles,” Applied Physics Letters, vol. 88, Issue 3, 031901, 2006.
    [18] S. Yi, J. Li, J. Zhu, X. Wang, J. Mo and S. Ding, “Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration”, Journal of Manufacturing Processes, vol. 49, pp. 35-49, 2020.
    [19] A. O. Borode, N. A. Ahmed and P. A. Olubambi, “Electrochemical corrosion behavior of copper in graphene-based thermal fluid with different surfactants,” Heliyon, vol. 7, Issue 1, e05949, 2021.
    [20] 奈米材料,維基百科,民110年4月8日。取自:https://zh.wikipedia.org/wiki/奈米材料
    [21] 林景正、賴宏仁,“奈米材料技術與發展趨勢”,奈米材料與技術專題,95-101頁,工業材料153期,1999年。
    [22] 洪偉修教授,“世界上最薄的材料--石墨烯”,98康熹化學報報,1-4頁,2009年11月。
    [23] A. Geim and K. Novoselov, “Graphene – the perfect atomic lattice”, The Nobel Prize in Physics, 2010.
    [24] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 18, vol. 321, Issue 5887, pp. 385-388, 2008.
    [25] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, A. K. Geim, T. Stauber and N. M. R. Peres, “Fine structure constant defines visual transparency of graphene,” Science 06, vol. 320, Issue 5881, pp. 1308, 2008.
    [26] J. Gao, Q. Yan, L. Lv, X. Tan, J. Ying, K. Yang, J. Yu, N. Jiang, C. Lin and W. Dai, “Lightweight thermal interface materials based on hierarchically strucntured graphene paper with superior through-plane thermal conductivity,” Chemical Engineering Journal, vol. 419, 129609, 2021.
    [27] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, “Thermal condu ctance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, 6, 1, pp. 96-100, 2006.
    [28] 王瑞良,“石墨烯:異軍突起的新材料”,科學24小時,第24-27頁,第4期,2017年。
    [29] H.Y. Cao, Z.X. Guo, H. Xiang and X.G. Gong, “Layer and size dependence of thermal conductivity in multilayer graphene nanorribbons,” Phys Lett A, 376, pp. 525-528, 2012.
    [30] A. Hussanan, M. Z. Salleh, I. Khan and S. Shafie, “Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil,” Journal of Molecular Liquids, vol. 229, pp. 482-488, 2017.
    [31] W. Yu, H. Xie and D. Bao, “Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets,” Nanotechnology, vol.21, 055705, 2009.
    [32] P. Lin, Q. Yan, Y. Chen, X. Li and Zh. Cheng, “Dispersion and assembly of reduced graphene oxide in chiral nematic liquid crystals by charged two-dimensional nanosurfactants,” Chem Eng J, vol. 334, pp. 1023-1033, 2018.
    [33] Y. J. Hwang, J. K. Lee, C.H. Lee, Y. M. Jung, S. I. Cheong, C. G. Lee, B. C. Ku and S. P. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochimica Acta, vol. 455, Issues 1-2, pp. 70-74, 2007.
    [34] H. Yarmand, S. Gharehkhani, S. F. S. Shirazi, S. Baradaran, E. Montazer, M. N. M. Zubir, S. N. Kazi and M. Dahari, “Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer,” Energy Conversion and Management, vol. 100, pp. 419-428, 2015.
    [35] M. Sandhya, D. Ramasamy, K. Sudhakar, K. Kadirgama, M. Samykano, W. S. W. Harun, G. Najafi, M. Mofijur, M. Mazlan, “A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties,” Sustainable Energy Technologies and Assessments, vol. 44, 101058, 2021.
    [36] M. Sandhya, D. Ramasamy, K. Sudhakar, K. Kadirgama and W. S. W. Harun, “Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids – A systematic overview,” Ultrasonics Sonochemistry, vol. 73, 105479, 2021.
    [37] K. Elsaid, M. A. Abdelkareem, H. M. Maghrabie, E. T. Sayed, T. Wilberforce, A. Baroutaji and A. G. Olabi, “Thermophysical properties of graphene-based nanofluids,” International Journal of Thermofluids, vol. 10, 100073, 2021.
    [38] Y. Zheng, X. Zhang, A. Shahsavar, Q. Nguyen and S. Rostami, “Experimental evaluating the rheological behavior of ethylene glycol under graphene nanosheets loading,” Powder Technology, vol. 367, pp. 788-795, 2020.
    [39] M. Bahiraei and S. Heshmatian, “Graphene family nanofluids: A critical review and future research directions,” Energy Conversion and Management, vol. 196, pp. 1222-1256, 2019.
    [40] S. Askari, A. Rashidi and H. Koolivand, “Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids,” International Communications in Heat and Mass Transfer, vol. 108, 104334, 2019.
    [41] R. Saidur, K. Y. Leong, and H. A. Mohammed, “A review on applications and challenges of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 1646-1668, 2011.
    [42] E. M. C. Contreras, G. A. Oliveira, E. P. Bandarra Filho, “Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems,” International Journal of Heat and Mass Transfer, vol. 132, pp. 375-387, 2019.
    [43] 李育嘉,“漫談布朗運動”,數學傳播季刊,第9卷,第3期,1985年。
    [44] 布朗運動,維基百科,民110年4月10日。取自:https://zh.wikipedia.org/wiki/布朗運動
    [45] R. P. Feynman, The Brownian Movement- The Feynman Lectures of Physics, vol I., 1964.
    [46] 王子瑜、曹恒光,“布朗運動、郎之萬方程式與布朗動力學”,物理雙月刊,第27卷,第3期,456-460頁,2005年。
    [47] H. J. Keh, P. Y. Chen, “Thermophoresis of an Aerosol Sphere Parallel to One or Two Plane Walls,” AIChE journal, vol. 49, No. 9, pp. 2283-2299, 2003.
    [48] S. Goudarzi, M. Shekaramiz, A. Omidvar, E. Golab, A. Karimipour and A. Karimipour, “Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection,” Powder Technology, vol. 375, pp. 493-503, 2020.
    [49] D. Song, Y. Yang and D. Jing, “Insight into the contribution of rotating Brownian motion of nonspherical particle to the thermal conductivity enhancement of nanofluid,” International Journal of Heat and Mass Transfer, vol. 112, pp. 61-71, 2017.
    [50] A. Asadi, M. Asadi, M. Siahmargoi, T. Asadi and M. G. Andarati, “The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation,” International Journal of Heat and Mass Transfer, vol. 108, pp. 191-198, 2017.
    [51] S. Chakraborty, I. Sarkar, D. K. Behera, S. D. Pal and S. Chakraborty, “Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid,” Powder Technology, vol. 307, pp. 10-24, 2017.
    [52] J. Alsarraf, A. A. Al-Rashed, A. A. Alnaqi and A. S. Goldanlou, “Dominance of cohesion of EG-water molecules over Van der Waals force between SiO2-ZnO nanoparticles in the liquid interface,” Powder Technology, vol. 379, pp. 537-546, 2021.
    [53] H. Zhang, S. Qing, Y. Zhai, X. Zhang and A. Zhang, “The changes induced by pH in TiO2/water nanofluids: Stability, thermophysical properties and thermal performance,” Powder Technology, vol. 377, pp. 748-759, 2021.
    [54] A. W. Zaibudeen and J. Philip, “Temperature and pH sensor based on functionalized magnetic nanofluid,” Sensors and Actuators B: Chemical, vol. 268, pp. 338-349, 2018.
    [55] N. S. Souza, C. A. Cardoso, F. M. Araujo-Moreira, S. Sergeenkov, A. D. Rodrigues, J. C. Galzerani, H. Pardo, R. Faccio, A. W. Mombru and O.F. de Lima, “Physical properties of nanofluid suspension of ferromagnetic graphite with high Zeta potential,” Physics Letters A, vol. 376, Issue 4, pp. 544-546, 2012.
    [56] K. S. Suganthi and K. S. Rajan, “Temperature induced changes in ZnO–water nanofluid: Zeta potential, size distribution and viscosity profiles,” International Journal of Heat and Mass Transfer, vol. 55, Issues 25-26, pp. 7969-7980, 2012.
    [57] K. Alexander, S. S. Gajghate, A. S. Katarkar, A. Majumder and S. Bhaumik, “Role of nanomaterials and surfactants for the preparation of graphene nanofluid: A review,” Materials Today: PROCEEDINGS, vol. 44, Part 1, pp. 1136-1143, 2021.
    [58] M. J. Bai, J. L. Liu, J. He, W. J. Li, J. J. Wei, L. X. Chen, J. Y. Miao and C. M. Li, “Heat transfer and mechanical friction reduction properties of graphene oxide nanofluids,” Diamond and Related Materials, vol. 108, 107982, 2020.
    [59] J. Huang, Z. Chen, Z. Du, X. Xu, Z. Zhang and X. Fang, “A highly stable hydroxylated graphene/ethylene glycol-water nanofluid with excellent extinction property at a low loading for direct absorption solar collectors,” Thermochimica Acta, vol. 684, 178487, 2020.
    [60] S. U. Ilyas, S. Ridha and F. A. A. Kareem, “Dispersion stability and surface tension of SDS-Stabilized saline nanofluids with graphene nanoplatelets,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 592, 124584, 2020.
    [61] I. Kazemi, M. Sefid and M. Afrand, “A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: Characterization, stability and viscosity measurements,” Powder Technology, vol. 366, pp. 216-229, 2020.
    [62] Ç. Demirkır and H. Ertürk, “Rheological and thermal characterization of graphene-water nanofluids: Hysteresis phenomenon,” International Communications in Heat and Mass Transfer, vol. 149, 119113, 2020.
    [63] V. Selvaraj and H. Krishnan, “Synthesis of graphene encased alumina and its application as nanofluid for cooling of heat-generating electronic devices,” Powder Technology, vol. 363, pp. 665-675, 2020.
    [64] S. Hamze, D. Cabaleiro and P. Estellé, “Graphene-based nanofluids: A comprehensive review about rheological behavior and dynamic viscosity,” Journal of Molecular Liquids, vol. 325, 115207, 2020.
    [65] M. Fares, A. M. Mohammad and A. S. Mohammed, “Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids,” Case Studies in Thermal Engineering, vol. 18, 100584, 2020.
    [66] T. Balaji, C. Selvam, D. M. Lal and S. Harish, “Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids,” International Communications in Heat and Mass Transfer, vol. 117, 104716, 2020.
    [67] S. Torii, “Enhancement of heat transfer performance in pipe flow using graphene-oxide-nanofluid and its application,” Materials Today: PROCEEDINGS, vol. 35, Part 3, pp. 506-511, 2021.
    [68] K. Singh, D. P. Barai, S. S. Chawhan, B. A. Bhanvase and V. K. Saharan, “Synthesis, characterization and heat transfer study of reduced graphene oxide-Al2O3 nanocomposite based nanofluids: Investigation on thermal conductivity and rheology,” Materials Today COMMUNICATIONS, vol. 26, 101986, 2021.
    [69] M. Ali, A. M. El-Leathy and Z. Al-Sofyany, “The effect of nanofluid concentration on the cooling system of vehicles radiator,” Advances in Mechanical Engineering, vol. 6, 962510, 2014.
    [70] E. M. C. Contreras, G. A. Oliveira, E. P. Bandarra Filho, “Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems,” International Journal of Heat and Mass Transfer, vol. 132, pp. 375-387, 2019.
    [71] J. P. Vallejo, U. Calviño, I. Freire, J. Fernández-Seara and L. Lugo, “Convective heat transfer in pipe flow for glycolated water-based carbon nanofluids. A thorough analysis,” Journal of Molecular Liquids, vol. 301, 112370, 2020.
    [72] E. Sadeghinezhad, A. R. Akhiani, H. S. C. Metselaar, S. T. Latibari, M. Mehrali and M. Mehrali, “Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids,” Applied Thermal Engineering, vol. 175, 115385, 2020.
    [73] M. N. H. M. Hilmin, M. F. Remeli, B. Singh and N. D. N. Affandi, “Thermoelectric power generations from vehicle exhaust gas with TiO2 nanofluid cooling,” Thermal Science and Engineering Progress, vol. 18, 100558, 2020.
    [74] M. Chen and J. Li, “Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles,” Journal of Energy Storage, vol. 32, 101715, 2020.
    [75] N. Arora and M. Gupta, “An updated review on application of nanofluids in flat tubes radiators for improving cooling performance,” Renewable and Sustainable Energy Reviews, vol. 134, 110242, 2020.
    [76] X. Li, H. Wang and B. Luo, “The thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 612, 125968, 2021.
    [77] C. Selvam, R. S. Raja, D. M. Lal and S. Harish, “Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions,” International Journal of Heat and Mass Transfer, vol. 115, Part B, pp. 580-588, 2017.
    [78] A. M. Elsaid, “Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator,” International Communications in Heat and Mass Transfer, vol. 108, 104263, 2019.
    [79] M. B. Bigdeli, M. Fasano, A. Cardellini, E. Chiavazzo and P. Asinari, “A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1615-1633, 2016.
    [80] C. Selvam, D. M. Lal and S. Harish, “Enhanced heat transfer performance of an automobile radiator with graphene based suspensions,” Applied Thermal Engineering, vol. 123, pp. 50-60, 2017.
    [81] ASTM G99-95a, Standard test method for wear testing with a pin-on-disk apparatus, 2000.
    [82] 機車腳踏車燃料消耗量試驗法,中華民國國家標準,CNS-3105,D3029。

    下載圖示
    QR CODE