簡易檢索 / 詳目顯示

研究生: 簡仲葳
Chien, Chung-Wei
論文名稱: 微焊接技術探討與微電路製備
Microsoldering and nano circuit fabrication
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 62
中文關鍵詞: 原子力顯微術原子力場效應定點氧化奈米碳管電流調節閥奈米微焊接類核黃素
英文關鍵詞: Atomic force microscopy, AFM field-induced local oxidation, current rectification devices, carbon nanotubes, microsoldering techniquephenothiazine, phenothiazine
論文種類: 學術論文
相關次數: 點閱:150下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於原子力顯微術(Atomic force microscopy,簡稱AFM)在奈米科技發展的應用潛力,本論文擬以導電模組原子力顯微技巧(Conducting-mode AFM)製備出微型電流調節閥裝置(Current rectifier)。根據本實驗室過去經驗,若對AFM探針施加偏壓,其針端電場可引起局部氧化(AFM-based field-induced local oxidation,簡稱ALO),使Phenothiazine化合物,如Thionine,進行氧化聚合反應而固定於探針下方導電載體表面。由於這些聚合高分子具有導電性,故可作為微焊接著物。此外,根據文獻報導,奈米碳管具有優越電子傳導能力。若能結合這兩種物質的特性,便可藉以製備微電流調節閥,探討電子在奈米碳管表面的傳導機制。實驗結果顯示多層奈米碳管是半導體,幾乎不具電子傳導功能,但若在其兩端以微焊技術焊上Thionine,則可使電流在其表面流通,顯示本論文所發展的微焊技術極具應用潛力。

    In the light of the potential of the Atomic force microscopy (AFM) in the development of nanotechnologies, we study the possibility of developing any microsoldering technique to fabricate the carbon nanotube-based current rectification devices with the conducting-mode AFM techniques. According to our previous experiments, the AFM tip can induce electrical field to cause local oxidation (ALO) of phenothiazine compounds, such as thionine, as being applied with bias voltages. Since the phenothiazine after ALO can form polymer with appreciable conductance, it shows potential as a micro soldering reagent. Besides, carbon nanotubes (CNTs) have been known that may allow electrons to transport on their surface in a ballistic manner. Despite this, experiments show that multi-wall carbon nanotubes, if without proper ohmic contact, can not conduct electricity. When the both ends of the tested CNTs are soldered with polymeric thionine, significant currents can therefore flow. These results demonstrate that the microsoldering technique proposed in this thesis is useful, showing potential in the development of CNT-based current rectification devices.

    目錄................................................... I 圖目錄 ...............................................III 中文摘要 .............................................VIII 英文摘要 ...............................................IX 第一章 緒論 ............................................ 1 1.1奈米碳管 (Carbon nanotube)............................1 1.2 奈米碳管場效應電晶體 (Carbon Nanotube Field Effect Transistor) ............................................5 1.3 奈米微刻技術(Nanolithography).......................7 1.4 研究動機 .......................................... 10 第二章 實驗 ............................................11 2.1化學藥品 ............................................11 2.2 實驗設備 .......................................... 12 2.3 樣品的前處理與製備 ..................................13 2.4 AFM操作流程 ........................................15 第三章 實驗結果與討論 ...................................19 II 3.1 Phenothiazine之原子力顯微鏡探針針端電場誘發局部氧化聚合探討 .......................................................19 3.2 TC之原子力顯微鏡探針針端電場誘發局部氧化聚合導電度分析 . .43 3.3 TC奈米場效應電子控制閥製備探討 ........................47 3.4 奈米碳管場效應電子控制閥製備探討 ......................50 第四章 結論 ............................................56 第五章 未來展望 .........................................57 第六章 參考文獻 .........................................58

    [1] Kim, H.; Abdala, A. A.; Macosko, C. W. Macromolecules 2010, 43, 6515-6530.
    [2] Davis, W.; Slawson, R.; Rigby, G. 1953.
    [3] Iley, R.; Riley, H. J. Chem. Soc. 1948, 1362-1366.
    [4] Lange, H.; Huczko, A.; Byszewski, P.; Mizera, E.; Shinohara, H. Chemical physics letters 1998, 289, 174-180.
    [5] Iijima, S. Nature 1991, 354, 56-58.
    [6] Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971-1975.
    [7] Hone, J.; Batlogg, B.; Benes, Z.; Johnson, A.; Fischer, J. Science 2000, 289, 1730-1733.
    [8] Yu, M.-F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637-640.
    [9] Terrones, M.; Hsu, W. K.; Kroto, H. W.; Walton, D. R. In Fullerenes and related structures; Springer: 1999, p 189-234.
    [10] Hamada, N.; Sawada, S.-i.; Oshiyama, A. Physical Review Letters 1992, 68, 1579.
    [11] Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, u. M. Applied physics letters 1992, 60, 2204-2206.
    [12] Tans, S. J.; Verschueren, A. R.; Dekker, C. Nature 1998, 393, 49-52.
    [13] Fischer, J. E. Accounts of chemical research 2002, 35, 1079-1086.
    [14] Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J. Nature communications 2011, 2, 541.
    [15] Bardeen, J.; Brattain, W. H. Physical Review 1949, 75, 1208.
    [16] Shockley, W.; Queisser, H. J. Journal of applied physics 1961, 32, 510-519.
    [17] Shockley, W. Proceedings of the IRE 1952, 40, 1365-1376.
    [18] Lasky, J. Applied Physics Letters 1986, 48, 78-80.
    [19] Xie, Y.; Monroe, D.; Fitzgerald, E.; Silverman, P.; Thiel, F.; Watson, G. Applied physics letters 1993, 63, 2263-2264.
    [20] Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. Physical Review Letters 2004, 92, 106804.
    [21] Tans, S. J.; Verschueren, A. R.; Dekker, C. Nature 1998, 393, 49-52.
    [22] Haynes, C. L.; Van Duyne, R. P. The Journal of Physical Chemistry B 2001, 105, 5599-5611.
    [23] Brott, L. L.; Naik, R. R.; Pikas, D. J.; Kirkpatrick, S. M.; Tomlin, D. W.; Whitlock, P. W.; Clarson, S. J.; Stone, M. O. Nature 2001, 413, 291-293.
    [24] Boto, A. N.; Kok, P.; Abrams, D. S.; Braunstein, S. L.; Williams, C. P.; Dowling, J. P. Physical Review Letters 2000, 85, 2733.
    [25] Dill, F. H. Electron Devices, IEEE Transactions on Electron Devices 1975, 22, 440-444.
    [26] Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Applied Surface Science 2000, 164, 111-117.
    [27] Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Journal of Vacuum Science & Technology B 1996, 14, 4129-4133.
    [28] Liu, G.-Y.; Xu, S.; Qian, Y. Accounts of Chemical Research 2000, 33, 457-466.
    [29] Dagata, J.; Schneir, J.; Harary, H.; Evans, C.; Postek, M.; Bennett, J. Applied Physics Letters 1990, 56, 2001-2003.
    [30] J. Chem. Soc.Avouris, P.; Martel, R.; Hertel, T.; Sandstrom, R. Applied Physics A: Materials Science & Processing 1998, 66, S659-S667.
    [31] Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661-663.
    [32] Pena, D. J.; Raphael, M. P.; Byers, J. M. Langmuir 2003, 19, 9028-9032.
    [33] Huo, F.; Zheng, G.; Liao, X.; Giam, L. R.; Chai, J.; Chen, X.; Shim, W.; Mirkin, C. A. Nature nanotechnology 2010, 5, 637-640.
    [34] Jang, S.-Y.; Marquez, M.; Sotzing, G. A. Journal of the American Chemical Society 2004, 126, 9476-9477.
    [35] Jegadesan, S.; Sindhu, S.; Advincula, R. C.; Valiyaveettil, S. Langmuir 2006, 22, 780-786.
    [36] Li, Y.; Maynor, B. W.; Liu, J. Journal of the American Chemical Society 2001, 123, 2105-2106.
    [37] Schlereth, D. D.; Karyakin, A. A. Journal of Electroanalytical Chemistry 1995, 395, 221-232.
    [38] 黃翔盈,國立臺灣師範大學化學研究所碩士論文,2009.
    [39] 張育銘,國立臺灣師範大學化學研究所碩士論文,2011.
    [40] Jegadesan, S.; Sindhu, S.; Advincula, R. C.; Valiyaveettil, S. Langmuir 2006, 22, 780-786.
    [41] Yang, M.; Zheng, Z.; Liu, Y.; Zhang, B. The Journal of Physical Chemistry B 2006, 110, 10365-10373.
    [42] Garipcan, B.; Winters, J.; Atchison, J.; Cathell, M.; Schiffman, J. D.; Leaffer, O.; Nonnenmann, S.; Schauer, C.; Piskin, E.; Nabet, B. Langmuir 2008, 24, 8944-8949.

    下載圖示
    QR CODE