簡易檢索 / 詳目顯示

研究生: 詹昂
Ang Chan
論文名稱: 含十六族元素(硫、硒、碲)與過渡金屬(鉻、錳、鐵)之團簇化合物的合成與反應探討以及化性與物性研究
指導教授: 謝明惠
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 189
中文關鍵詞: 16族元素團簇化合物氫氣電化學
英文關鍵詞: chalcogens, cluster compounds, manganese, chromium, iron, hydrogen, electrochemistry
論文種類: 學術論文
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • E–Cr (E = S, Se)系統
    取硫粉末或是 SeO2 與 Cr(CO)6 於80 ~ 85 oC 下以2:3的比例在鹼性甲醇溶液中,加熱反應可得雙三角錐結構的 [HE2Cr3(CO)9]3– (E = S, 1a; Se, 1b),有趣的是當 1a 或 1b 在 – 40oC 低溫且充滿 CO 的環境下,加入兩當量的醋酸,可分別得到 [E2Cr3(CO)10]2– (E = S, 1a; Se, 1b) 伴隨著氫氣的產生。進一步我們將 2a 和 2b 分別與兩當量的 KOH 溶於MeCN/MeOH中並加熱至80 oC ,可逆反應生成 1a 和 1b。另一方面Na2S 和Cr(CO)6 於90 oC下以莫耳比2: 3在甲醇溶液中反應36小時,可得化合物 2a,並有效的提生產率由20 %至54 %。
    此外我們將1a 分別與有機鹵化物 RX (R = PhCH2,X = Br;R = Ph,X = I) 反應可得到化合物 [S4Cr5(CO)14]3– (3),並伴隨著 Toluene 以及 Benzene的生成,相同地,1b 和 PhCH2Br 反應也可得到有機產物 Toluene,但與 PhI卻無反應發生。同時藉由理論計算對一系列化合物之電子結構、電化學進行分析與討論。

    E–Mn–Fe (E = Se, Te)系統
    取適量 E (E = Se、Te) powder 與 Mn2(CO)10 和 Fe(CO)5 及 [PPN]Cl 於75 oC下以莫耳比2: 1: 1: 1在1.66M KOH 甲醇溶液中反應,可得混和 Mn─Fe 的四角錐金屬團簇物 [E2Mn2Fe(CO)9]2– (E = Se, 1; Te, 2),有鑑於 X-ray 上無法分辨錳和鐵原子,因此利用密度泛函數理論 (Density Fuctional Theory) 進行分子的紅外線光譜模擬,證實此四角錐之底部四邊形是由 E2Mn2 以對位的形式構成,頂端蓋接 Fe(CO)3 片段。
    再者,將四角錐錯合物1 分別與一當量 Fe(CO)5 和 Mn2(CO)10與適量 KOH 溶於 CH2Cl2/MeOH 下進行擴核反應,可得到不同金屬比例的八面體形結構化合物 [Se2Fe2Mn2(CO)11]2– (3) 和 [Se2FeMn3(CO)11]2– (4) 。化合物4亦可由 [Se2Mn3(CO)9]– 於冰浴下與一當量 [HFe(CO)4]– 進行擴核反應得到。進一步藉由理論計算對一系列混和錳鐵化合物之電子結構以及電化學進行分析與討論。

    E–Cr–Fe (E =S, Se, Te)系統
    取適量 S powder與 Cr(CO)6 和 Fe(CO)5 及 [PPN]Cl 於85 oC下以莫耳比1: 1: 1: 2 於2 M KOH 的甲醇溶液中反應,可得到主族為硫且混和鉻和鐵的八面體結構化合物 [S2Cr2Fe2(CO)12]2– (1)。將主族改變為硒,並將莫耳比改為1: 1: 1: 2,可得到一混和鉻鐵團簇化合物 [Se2CrFe3(CO)11]2– (2),根據 X-ray 單晶繞射分析顯示1和2均為八面體構形且E (E = S, Se) 原子分別蓋接在 M4 (M = Cr or Fe) 金屬環上方以及下方,但若將主族改變為碲,而莫耳比改為2: 1: 2: 2,卻得 arachano 錯合物 [Te2CrFe2(CO)10]2– (3),X-ray 單晶繞射分析顯示結構 3 底部為一蝴蝶構形的Te2Fe2(CO)9,再由一Cr(CO)4 片段橋接在Te2 上。進一步我們將化合物 2 於80 oC 1 M KOH的甲醇及乙氰溶液中反應可得到雙三角錐化合物 [Se2Cr2Fe(CO)9]2– (4). 並藉由理論計算對一系列混和鉻鐵化合物之電子結構以及電化學進行分析與討論。

    關鍵字: 16 族元素、團簇化合物、錳、鉻、鐵、氫氣、電化學。

    E–Cr (E = S, Se) System
    The reaction of sulfur powder or SeO2 with Cr(CO)6 in molar ratio of 2: 3 in KOH/MeOH/hexanes solutions at 80 oC formed a selenium-capping trichromium closo-trigonal-bipyramidal (TBP) carbonyl hydride clusters [HE2Cr3(CO)9]3– (E = S, 1a; Se, 1b). Interestingly, the deprotonation of 1a and 1b using acetic acid under CO atmosphere at –40oC rapidly released H2 and afforded selenium-capping trichromium TBP dianionic clusters [E2Cr3(CO)10]2– (E = S , 2a; Se, 2b), respectively. Conversely, clusters 2a and 2b could be reconverted to 1a and 1b by the treatment with two equivalents of KOH in MeCN/MeOH solutions at 80 oC. On the other hand, when Na2S reacted with Cr(CO)6 in molar ratio of 2: 3 in MeOH solutions at 90 oC, cluster 2 was formed, efficiently increasing the yield from 20 % to 54 %.
    Additionally, when cluster 1a reacted with organic halides RX (R = PhCH2,X = Br;R = Ph,X = I), the Cr-linked S2Cr2(CO)-based cluster [S4Cr5(CO)14]3– (3) was obtained along with the formation of toluene and benzene, respectively. Likewise, the reaction of 1b with PhCH2Br gave 3 and toluene. However, no reaction was observed for the reaction of 1b with PhI. Furthermore, the nature and electrochemical studies of the resultant clusters were studied and elucidated with the aid of molecular calculations of the density functional theory.

    E–Mn–Fe (E = Se, Te) System
    When E powder, Fe(CO)5, Mn2(CO)10, and [PPN]Cl were mixed in concentrated KOH methanolic solutions in molar ratio of 2: 1: 1: 1 at 75 oC , the mixed Fe–Mn square-pyramidal clusters [E2FeMn2(CO)9]2– (E = Se, 1; Te, 2) were obtained, respectively. X-ray analysis revealed that clusters 1 and 2 were isostructural, in which the trans-E2Mn2 square was capped by an apical Fe(CO)3 fragment. Further studies showed that 1 can undergo cluster-growth reactions by the treatments of Fe(CO)5 and Mn2(CO)10 in KOH/MeOH solution to form mixed Fe–Mn octahedral complexes [Se2Fe2Mn2(CO)11]2– (3) and [Se2FeMn3(CO)11]2– (4), respectively. Clusters 2 and 3 were isostructures, and the M4 (M = Mn or Fe) ring was capped above and below by the Se atoms. Cluster 4 could was also obtained from the reaction of homometallic trigonal-bipyramidal cluster [Se2Mn3(CO)9]– with [HFe(CO)4]– under controlled conditions. The electrochemical studies showed two series of mixed Mn–Fe clusters possessed rich redox capabilities. Further, the nature, formation, and electrochemistry of these mixed Fe–Mn carbonyl clusters were studied and elucidated with the aid of molecular calculations of the density functional theory.

    E–Cr–Fe (E = Se, Te) System
    When S powder, Cr(CO)6, Fe(CO)5, and [PPN]Cl were mixed in concentrated KOH methanolic solutions in molar ratio of 1: 1: 1: 2 at 80 oC , a mixed Cr–Fe octeahedral cluster [S2Cr2Fe2(CO)12]2– (1) was obtained. On the other hand, Se powder could reacted with Cr(CO)6, Fe(CO)5, and [PPN]Cl in concentrated KOH methanolic solutions in molar ratio of 2: 1: 3: 2 at 80 oC to give a new mixed Cr–Fe cluster [Se2CrFe3(CO)11]2– (2). X-ray analysis showed that clusters 1 and 2 each consisted of an octahedral core, where the M4 (M = Cr or Fe) ring was capped above and below by the E atoms (E = S, Se). Besides, when Te powder was used as the chalcogen source under the similar condition, a new arachno-cluster [Te2CrFe2(CO)10]2– (3) was formed. Cluster 3 comprised of a Te2Fe2 butterfly with the “wintip” Te atoms linked by a Cr(CO)4 fragment. Furthermore,the reaction of compound 2 with 1 M KOH/MeOH/MeCN solution at 80 oC produced the trigonal-bipyramidal complex [HSe2CrFe2(CO)9]2– (4). Moreover, the nature, formation, and electrochemistry of these mixed Cr–Fe carbonyl clusters were studied and elucidated with the aid of molecular calculations of the density functional theory.

    Keywords: chalcogens, cluster compounds, manganese, chromium, iron,
    hydrogen, electrochemistry.

    中文摘要 英文摘要 第一章 含硫、硒之鉻金屬團簇化合物之合成及其相關反應探討。 1.1 摘要…………………………………………………………………...……1 1.2 前言…………………………………………………………..……….……3 1.3 實驗目標……………………………………………………………..…….4 1.4 結果與討論……………………………………………………………...…5 1.4-1 [Et4N]3[HS2Cr3(CO)9] ([Et4N]3[1a]) 之反應性探討………………..……5 1.4-2 [Et4N]3[HSe2Cr3(CO)9] ([Et4N]3[1b]) 之反應性探討 ……………….….6 1.4-3 [Et4N]3[HS2Cr3(CO)9] ([Et4N]3[1a]) 與 CH3COOH 的反應…...............8 1.4-4 [Et4N]3[HSe2Cr3(CO)9] ([Et4N]3[1b]) 與 CH3COOH 的反應……...…..8 1.4-5 [Et4N]2[E2Cr3(CO)10] (E = S, Se) 與 KOH 的反應. ………….………...9 1.4-6 化合物 [Et4N]3[1a]、[Et4N]3[1b] 的氫氣產生反應探討 .....................10 1.4-7 化合物1a [Et4N]3[1a] 和 [Et4N]3[1b] 與 RX (R = PhCH2,X = Br;R = Ph,X = I) 反應.. …………………………………….........................11 1.5 紅外線光譜比較………………………………………………....….....…13 1.6 X-ray 結構比較……………………………………………………...........13 1.6-1 [Et4N]3[1a] 之結構討論... ……………………………………….……..14 1.6-2 [Et4N]3[3] 之結構討論. ………...........................…………..…….…….15 1.7 化合物 [Et4N]3[1a]、[Et4N]3[1b]、[Et4N]2[2a]、[Et4N]2[2b] 之一系列雙 三角錐電化學討論及比較…. ………………………………....................16 1.8 理論計算的探討…………………………………………………….....…21 1.9 結論………………………………….……………………………............22 1.10 實驗部分………………………………………………………………...23 1.6-1 [Et4N]3[HS2Cr3(CO)9] ([Et4N]3[1a]) 之合成………………….….......…24 1.6-2 [Et4N]3[HSe2Cr3(CO)9] ([Et4N]3[1b]) 之合成………………….............25 1.6-3 [Et4N]2[S2Cr3(CO)10] [Et4N]2[2a] 之合成..……………………..............26 1.6-4 [Et4N]3[1a] 轉換至 [Et4N]2[2a]...……………...…………………........26 1.6-5 [Et4N]3[1b] 轉換至 [Et4N]2[2b]..............................................................27 1.6-6 [Et4N]2[2a] 轉換至 [Et4N]3[1a].…………………….........…….……...28 1.6-7 [Et4N]2[2b] 轉換至 [Et4N]3[1b].. ………………………………….......28 1.6-8 [Et4N]3[S4Cr5(CO)14] [Et4N]3[3] 之合成. ………………………..……..29 1.6-9 [Et4N]3[1a] 與 PhCH2Br 反應…………………………………............29 1.6-10 [Et4N]3[1b] 與 PhCH2Br 反應 ......…………...………………..……30 1.6-11 [Et4N]3[1a] 與 Iodobenzene (PhI) 反應 ...................……….….....…30 氫氣的定量分析 1.6-13檢量線製作…………………………………………….……………….30 1.6-14 [Et4N]3[1a] 之質子化 (Protonation) 以及氫氣的產生..…....….........31 1.6-15 [Et4N]3[1b] 之質子化 (Protonation) 以及氫氣的產生.......................31 1.6-16化合物 [Et4N]3[1a]、[Et4N]3[3] 之X-ray結構解析.....………...........32 1.6-17 ESI-Mass 分析之相關參數...…………………………………...…….32 1.6-18 GC-TCD 分析之相關參數...…………………………………..….…..33 1.6-19 電化學分析.. ……………………………………………………..…...33 1.6-20 理論計算…………………………………………………………....…34 1.7 參考文獻.. …………………………………………………………….….35 第二章 含十六族(硒、碲)及混和錳、鐵團簇化合物之擴核及其一鍋化反應 性探討………………………………………………………….……..67 2.1 摘要 ……………………………………………………………………...67 2.2 前言……………………………………………………………………….69 2.3 實驗目標………………………………………………………………….71 2.4 結果與討論…………………………………………………………….…72 2.4-1 [PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1]) 之反應性探討………..............…73 2.4-2 [PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2]) 之反應性探討…………..............74 [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3]) 之反應性探討 2.4-3一鍋化反應 (one pot reaction).. ……………………………………..…75 2.4-4 由1 至 3 的逐步擴核 (stepwise) 反應…………………….......……75 2.4-5 1 至 4 的逐步擴核 (stepwise) 反應……………..………….…..........77 2.4-6 [PPN][Se2Mn3(CO)9] 至 [PPN]2[4] 的逐步擴核 (stepwise) 反應......77 2.5 電子計算與磁性討論……………………………………………….....…78 2.6 X-ray 結構分析. ………………………………………………....…...…..79 2.6-1 [PPN]2[E2Mn2Fe(CO)9] (E = Se, Te) 之結構討論…………...................81 2.6-2 [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3]) 和 [PPN]2[Se2Mn3Fe(CO)11] ([PPN]2[4]) 之結構討論……………………………………..…..………83 2.6-3 擴核反應與結構討論…………………………..…………………....…85 2.7 紅外線光譜比較…………………………………….……………..…..…86 2.8 理論計算探討……………………………………………………….....…87 2.8-1 [PPN]2[1] 之理論計算和結構探討……………………………...…......88 2.8-2 [PPN]2[2] 之理論計算和結構探討. ………………………………...…89 2.8-3 [PPN]2[3] 之理論計算和結構探討……………………………….........89 2.8-4 [PPN]2[4] 之理論計算和結構探討………………………………...…...90 2.9 電化學與理論計算綜合討論….……………………………………..…..91 2.9-1 [PPN]2[1] 和 [PPN]2[2] 之電化學探討……….....................................95 2.9-2 [PPN]2[3] 之電化學探討………………………………………….....…96 2.9-3 [PPN]2[4] 之電化學探討………...............…………………………..…98 2.9-4 [PPN][Se2Mn3(CO)9] 之擴核反應以及電化學探討………...................99 2.9-5 同核金屬以及混和金屬化合物之電化學比較……………….........…100 2.10 結論…………………………………………………………………..…103 2.11 實驗部分…………......................................................................………104 2.11-1 [PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1]) 之一鍋化合成 …………….…105 2.11-2 [PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2]) 之一鍋化合成………...............106 [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3]) 之合成…………………………...…106 2.11-3 方法一 (擴核反應):....………….…………………………….……106 2.11-4 方法二 (一鍋化):......………………………………………....……107 [PPN]2[Se2Mn3Fe(CO)11] ([PPN]2[4]) 之合成…………………….............…107 2.11-5 方法一 (擴核反應):…………………………………………….…..108 2.11-6 方法二 (擴核反應):…………………………………………….…..109 2.11-7 化合物 [PPN]2[1]、 [PPN]2[2]、[PPN]2[3]、[PPN]2[4] 之X-ray結 構解析…………………………………………………………….…..110 2.11-8 電化學分析……………………………………………………….......111 2.11-9 理論計算. ………………………………………………………….....111 2.12 參考文獻……………………………………………………………......113 第三章 含十六族(硫、硒、碲)與混和鉻、鐵金屬團簇化合物之一鍋化反應 探討………………..................……………………………………...154 3.1 摘要……………………...……………………………………….………153 3.2 前言……………………………………………………………….….......154 3.3 實驗目標……………………………………………………………........155 3.4 結果與討論………………………………………………………….…...155 3.4-1 [PPN]2[S2Cr2Fe2(CO)12] ([PPN]2[1]) 之反應性與結構探討……...…..155 3.4-2 [PPN]2[Se2CrFe3(CO)11] ([PPN]2[2]) 之反應性與結構探討…….....…157 3.4-3 [PPN]2[Te2CrFe2(CO)10] ([PPN]2[3]) 之反應性與結構探討…..…...…158 3.4-4 [PPN]2[Se2Cr2Fe(CO)9] ([PPN]2[4]) 之反應性與結構探討…......……160 3.5 結論………………………………………………………………….…...161 3.6 實驗部分………………………………………………………………....162 3.6-1 [PPN]2[S2Cr2Fe2(CO)12] ([PPN]2[1]) 之合成…………………...……. 163 3.6-2 [PPN]2[Se2CrFe3(CO)10] ([PPN]2[2]) 之合成……………….................164 3.6-3 [PPN]2[Te2CrFe2(CO)10] ([PPN]2[3]) 之合成……………………...…..165 3.6-4 [PPN]2[Se2Cr2Fe(CO)9] ([PPN]2[4]) 之合成……………………...…...165 3.6-5 化合物 [PPN]2[1]、[PPN]2[2]、[PPN]2[3] 和 [PPN]2[4] 之X-ray結 構解析…………………………………………………………….……166 3.6-6 理論計算………………………………………………………….……167 3.7 參考文獻…………………………………………………………….…...168 附錄...................................................................................................................189 圖解目錄 第一章 圖解1-1 1a, 1b 和 2a, 2b 之間轉換關係………………………….......……..5 圖解1-2 化合物 [Et4N]3[1a] (左) [Et4N]3[1b] (右) 的IR 光譜…...................7 圖解1-4 以內差法計算化合物 [Et4N]3[1a] 之氫氣產率..............................11 圖解1-5 以內差法計算化合物 [Et4N]3[1b] 之氫氣產率..............................11 圖解1-6 化合物 1a 和 1b 與有機鹵化物反應……………………………12 圖解1-7 [Et4N]3[1a] 之晶體結構圖 (30% thermal ellipsoid)…………….…14 圖解1-8 [Et4N]3[3] 之晶體結構圖之晶體結構圖 (30% thermal ellipsoid)...……………………………………………………..……15 圖解1-9 [Et4N]3[1a] 、 [Et4N]3[1b] 、 [Et4N]2[2a] 、 [Et4N]2[2b] 之電化學疊圖……………...…………….…………………………………17 圖解1-10 [Et4N]3[1a] 和[Et4N]3[3] 之電化學疊圖.........................................20 圖解1-11 化合物 1a 和 1b 各原子之價數..….........................................…21 第二章 圖解1-1 將錳引入同核化合物 E2Fe3(CO)9 (E = Se, Te)…............................70 圖解1-2 反應前後加入鹽類之示意圖….........................................................72 圖解1-3 化合物[PPN]2[1]、[PPN]2[2]、[PPN]2[3]、[PPN]2[4] 之合成與轉換關係…………………………………………….………………..….72 圖解1-4 兩金屬間的羰基表示示意圖………………………………....…….79 第三章 圖解1-1 化合物 [PPN]2[1]、[PPN]2[2]、[PPN]2[3] 和 [PPN]2[4] 之合成...155 圖解1-2化合物 1 之晶體結構圖 (30% probability thermal ellipsoids)…..156 圖解1-3 [PPN]2[Se2Cr2Fe2(CO)12] 和 [PPN]2[1] 之 IR 光譜圖.................157 圖解1-4化合物 2之晶體結構圖 (30% probability thermal ellipsoids)........158 圖解1-5 化合物3之晶體結構圖 (30% probability thermal ellipsoids).......159 圖解1-6 4之晶體結構圖 (30% probability thermal ellipsoids).....................160 表目錄 第一章 表1-1 化合物 [Et4N]3[1a]、[Et4N]3[1b]、[Et4N]2[2a]、[Et4N]2[2b] 之紅外線吸收光譜.………………………………………………….....………..13 表1-2 [Et4N]3[1a]、[Et4N]3[1b]、[Et4N]2[2a]、[Et4N]2[2b] 之平均鍵長 (Å)....13 表1-3 [Et4N]3[1a]、[Et4N]3[1b]、[Et4N]2[2a]、[Et4N]2[2b]、[Et4N]3[3] Differential Pulse Voltammetry (DPV)……...…………..………..…....16 第二章 表1-1 [PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1])、[PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2]) [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3])、[PPN]2[Se2Mn3Fe(CO)11] ([PPN]2[4]) 及其相關結構之平均鍵長 (Å).....................................................................................................80 表1-2 化合物 [PPN]2[1]、[PPN]2[2]、[PPN]2[3]、[PPN]2[4] 之紅外線吸收光譜…………………………………………………………………....86 表1-3 化合物3四邊形各邊上羰基之 (b-a)/a 值...........................................90 表1-4 化合物4四邊形各邊上羰基之 (b-a)/a 值...........................................91 表1-5 [PPN]2[1]、[PPN]2[2]、[PPN]2[3]、[PPN]2[4] 及其相關結構 Differential Pulse Voltammetry (DPV)......................................…...…..92 表1-6 化合物 [PPN]2[1]、[PPN]2[2] (B3P8640-42/LanL2DZ/6-31 +G*) 之部分軌域貢獻圖…………………………………………………………....93 表1-7 化合物 [PPN]2[3]、[PPN]2[4] (B3P8640-42/LanL2DZ/6-31 +G*) 之部分軌域貢獻圖............................................................................................94 附表目錄 第一章 附表1-1:[Et4N]3[HS2Cr3(CO)10]CH3CN ([Et4N]3[1a]CH3CN)、 [Et4N]3[S4Cr5(CO)14] ([Et4N]3[3]) 之X-ray晶體數據.....................40 附表1-2:[Et4N]3[HS2Cr3(CO)10]CH3CN ([Et4N]3[1a]CH3CN)、 [Et4N]3[S4Cr5(CO)14] ([Et4N]3[3]) 之部分鍵長 (Å) 與鍵角 (deg)..................................................................................................41 附表1-3:GC-TCD 之氫氣檢量線...................................................................43 第二章 附表1-1:[PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1])、[PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2]) [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3])、[PPN]2[Se2Mn3Fe(CO)11] ([PPN]2[4]) 之X-ray晶體數據.......................................................................125 附表1-2: [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3]) 之atomic coordinates 和 equivalent isotropic parameters (Ueq)...........................................126 附表1-3:[PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1])、[PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2]) [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3])、 [PPN]2[Se2Mn3Fe(CO)11] ([PPN]2[4]) 之部分鍵長 (Å) 與鍵角 (deg)................................................................................................127 附表1-4: 化合物 1 經 B3P86 和BP86最佳化計算後和X-ray 晶體之鍵 長鍵角比較…………….………………………………………...130 附表1-5: 同分異構物 1a─c經計算 (B3P86/LanL2dz/6-31G*) 之最佳化鍵 長和其能量 (zero-point energies) (E in a.u.)…………………..131 附表1-6: 同分異構物 2a─c經計算 (B3P86/LanL2dz/6-31G*) 之最佳化鍵 長和其能量 (zero-point energies) (E in a.u.)………………..….132 附表1-7: 同分異構物 3a─f經計算 (B3P86/LanL2dz/6-31G*) 之最佳化鍵 長和其能量 (zero-point energies) (E in a.u.)…………………...133 附表1-8: 同分異構物 4a─d經計算 (B3P86/LanL2dz/6-31G*) 之最佳化鍵 長和其能量 (zero-point energies) (E in a.u.)…………………...135 第三章 附表1-1:[PPN]2[S2Cr2Fe2(CO)12] ([PPN]2[1])、[PPN]2[Se2CrFe3(CO)11] ([PPN]2[2]) [PPN]2[Te2CrFe2(CO)10] ([PPN]2[3])、 [PPN]2[Se2Cr2Fe(CO)9] [PPN]2[4]) 之X-ray晶體數據................172 附表1-2:[PPN]2[S2Cr2Fe2(CO)12] ([PPN]2[1])、[PPN]2[Te2CrFe2(CO)10] ([PPN]2[3]) 之部分鍵長(Å) 與鍵角 (deg)................................173 附表1-3: 同分異構物 3a─c經計算 (B3P86/LanL2dz/6-31G*) 之最佳化鍵 長和其能量 (zero-point energies) (E in a.u.) .................................174 附圖目錄 第一章 附圖1-1:[Et4N]3[HS2Cr3(CO)10]CH3CN ([Et4N]3[1a]CH3CN) 之模擬質譜圖 (上) 與 ESI-Mass 圖(下)...............................................................44 附圖1-2:[Et4N]3[HS2Cr3(CO)10]CH3CN 之 1H NMR 光譜..........................45 附圖1-3:[Et4N]3[HSe2Cr3(CO)10] ([Et4N]3[1b]) 之模擬質譜圖 (上) 與 ESI-Mass 圖 (下)............................................................................46 附圖1-4:[Et4N]3[HSe2Cr3(CO)10] 之 1H NMR 光譜......................................47 附圖1-5:[Et4N]3[HS2Cr3(CO)10] 加入 CH3COOH後 之 1H NMR 光譜.....48 附圖1-6:[Et4N]3[HSe2Cr3(CO)10] 加入 CH3COOH後 之 1H NMR 光譜...49 附圖1-7:[Et4N]3[HS2Cr3(CO)10]CH3CN ([Et4N]3[1a]CH3CN) 之氣象層析圖及相關數據........................................................................................50 附圖1-8:[Et4N]3[HSe2Cr3(CO)10] ([Et4N]3[1b]) 之氣象層析圖及相關數據 ..........................................................................................................51 附圖1-9:[Et4N]3[1a] 加入PhCH2Br 產生甲苯之 1H NMR 光譜................52 附圖1-10:[Et4N]3[1b] 加入PhCH2Br 產生甲苯之 1H NMR 光譜..............53 附圖1-11:[Et4N]3[1a] 加入PhI 產生正己烷之 1H NMR 光譜....................54 附圖1-12:[Et4N]3[HS2Cr3(CO)9]MeCN ([Et4N]3[1a]MeCN)之紅外線光譜圖 ..........................................................................................................55 附圖1-13:[Et4N]3[HSe2Cr3(CO)9] ([Et4N]3[1b]) 之紅外線光譜圖...............56 附圖1-14:[Et4N]2[S2Cr3(CO)10] ([Et4N]2[2a]) 之紅外線光譜圖.....................57 附圖1-15:[Et4N]3[S4Cr5(CO)14] ([Et4N]3[3]) 之紅外線光譜圖.......................58 附圖1-16:1a之晶體結構圖 (30% probability thermal ellipsoids)..................59 附圖1-17:1a之晶體結構圖 (30% probability thermal ellipsoids)..................60 附圖1-18:Column: HP-MOLESIEVE (P/N 19095P-MS6) 相關氣體訊號出現 時間………………………………..………………………………61 附圖1-19:以玻璃碳電極於 CH3CN 溶液中測量 [Et4N]3[HS2Cr3(CO)9] ([Et4N]3[1a]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜。……………….................................................................….62 附圖1-20:以玻璃碳電極於 CH3CN 溶液中測量 [Et4N]3[HSe2Cr3(CO)9] ([Et4N]3[1b]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜...................................................................………………….63 附圖1-21:以玻璃碳電極於 CH3CN 溶液中測量 [Et4N]2[S2Cr3(CO)10] ([Et4N]2[2a]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜。..............................................................................................64 附圖1-22:以玻璃碳電極於 CH3CN 溶液中測量 [Et4N]2[Se2Cr3(CO)10] ([Et4N]2[2b]) (10─3 M) 之 Differential Pulse Voltammogram (DPV)……………………………………………………………..65 附圖1-23:以玻璃碳電極於 CH3CN 溶液中測量 [Et4N]3[S4Cr5(CO)14] ([Et4N]3[3]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜。..............................................................................................66 第二章 附圖1-1: 化合物 1、2、3、4 可能之構型.......................................................136 附圖1-2.1:化合物 1 之 FTIR 以及相關結構之 DFT-計算 IR 光譜......137 附圖1-2.2:化合物 2 之 FTIR 以及相關結構之 DFT-計算 IR 光譜......138 附圖1-2.3:化合物 3 之 FTIR 以及相關結構之 DFT-計算 IR 光譜......139 附圖1-2.4:化合物 4 之 FTIR 以及相關結構之 DFT-計算 IR 光譜......140 附圖1-3:[PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1])之紅外線光譜圖...................141 附圖1-4:[PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2])之紅外線光譜圖...................142 附圖1-5:[PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3])之紅外線光譜圖.................143 附圖1-6:[PPN]2[Se2Mn3Fe (CO)11] ([PPN]2[4])之紅外線光譜圖.................144 附圖1-7:[PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3]) 的模擬質譜圖(上) ESI-Mass 質譜圖 (下)......................................................................................145 附圖1-8:1之晶體結構圖 (30% probability thermal ellipsoids)....................146 附圖1-9:2之晶體結構圖 (30% probability thermal ellipsoids)....................147 附圖1-10:3之晶體結構圖 (30% probability thermal ellipsoids)..................148 附圖1-11:4之晶體結構圖 (30% probability thermal ellipsoids)..................149 附圖1-12: 以玻璃碳電極於 CH3CN 溶液中測量 [PPN]2[Se2Mn2Fe(CO)9] ([PPN]2[1]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜。...150 附圖1-13: 以玻璃碳電極於 CH3CN 溶液中測量 [PPN]2[Te2Mn2Fe(CO)9] ([PPN]2[2]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜。...151 附圖1-14: 以玻璃碳電極於 CH3CN 溶液中測量 [PPN]2[Se2Mn2Fe2(CO)11] ([PPN]2[3]) (10─3 M) 之 Differential Pulse Voltammogram (DPV) 圖譜。...152 第三章 附圖1-1: [PPN]2[1] 的模擬質譜圖 (上) ESI-Mass 質譜圖 (下)...............176 附圖1-2: [PPN]2[2] 的模擬質譜圖 (上) ESI-Mass 質譜圖 (下)...............177 附圖1-3: [PPN]2[3] 的模擬質譜圖 (上) ESI-Mass 質譜圖 (下)...............178 附圖1-4 : 化合物 3 之 FTIR 以及相關結構之 DFT 計算 IR 光譜…..179 附圖1-5: [PPN]2[4] 的模擬質譜圖 (上) ESI-Mass 質譜圖 (下)...............180 附圖1-6:[PPN]2[1] 之紅外線光譜圖.............................................................181 附圖1-7:[PPN]2[2] 之紅外線光譜圖.............................................................182 附圖1-8:[PPN]2[3] 之紅外線光譜圖.............................................................183 附圖1-9:[PPN]2[4] 之紅外線光譜圖.............................................................184 附圖1-10:1之晶體結構圖 (30% probability thermal ellipsoids)..................185 附圖1-11:2之晶體結構圖 (30% probability thermal ellipsoids)..................186 附圖1-12:3之晶體結構圖 (30% probability thermal ellipsoids)..................187 附圖1-13:4之晶體結構圖 (30% probability thermal ellipsoids)..................188

    1.7 參考文獻
    (1) Bonds, G. C. Heterogeneous Catalysis principles and applications; Oxford University Press: London, 1990, 2nd
    (2) (a)Topsoe, In Surface Properties and Catalysis by Non-metalls; Dordrecht, D. R., 1983; p.329. (b) Chianelli, R. R. Cata. Rev. –Sci. Eng. 1984, 26, 361. (c) Brorson, M.; Rink, B.; Scowen, I. J. Organometallics 1999, 18, 2309. (d) Matsubara, K.; Okamure, R; Tanaka, M.; Suzuki, H J. Am. Chem. Soc., 1998, 120, 1108. (e) Tucker, D. S.; Dietz, S.; Parker, K.G.; Garperos,V.; Gabay, J.; Noll B. Rakowski DuBois, M. Organometallics 1995, 14, 4325. (f) Houser, E. J.; Krautscheid, H.; Rauchfuss, T. B.;Wilson, S. R. J. Chem. Commun. 1994, 1283. (g) Riaz, U.; Curnow, O. ; Curtis, M D. J. Am. Chem. Soc., 1991, 113, 1416.
    (3) (a) Lin, Y. C.; Lu, K. H. Chemistry 1991, 49, 303. (b) Douglas, B.; Mcdaniel, D; Alexander, J. Concepts and Models of Inorganic Chemistry 3rd Wiley, 1994.
    (4) (a) Diéguez, M.; Claver, C.; Masdeu-Bultò, A. M.; Ruiz, A. Organometallics 1999, 18, 2107. (b) Limberg, C.; Hunger, M.; Kircher, P. Angew. Chem., Int. Ed. 1999, 38, 1252. (c) Suss-Fink, G.; Haak, S.; Ferrand, V.; Stoeckli-Evans, H. J. Chem. Soc., Dalton Trans. 1997, 3861.
    (5) Haak, S.; Neels, A.; Stoeckli-Evans, H.; Suss-Flink, G.; Thomas, C. M. Chem. Commun. 1999, 1959.
    (6) (a) F. A. Cotton, G. Wilkinson, C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, Inc, Singapore, 6th edn., 1999. (b) D. F. Shriver, H. D. Kaesz and R. D. Adams, The Chemistry of Metal Cluster Complexes, VCH, New York, 1990.
    (7) Behrens, H. and Haag, W. Chem. Ber., 1961, 94, 320.
    (8) Darensbourg, D. J.; Zalewski, D. J. Organometallics, 1984, 3, 1598.
    (9) Hoefler, M.; Tebbe, K.-F.; Veit, H.; Weiler, N. E. J. Am. Chem. Soc., 1983, 105, 6338.
    (10) J. Borm, G. Huttner and L. Zsolnai, Angew. Chem., Int. Ed. Engl., 1985, 24, 1069.
    (11) Darensbourg, D. J.; Zalewski, D. J.; Sanchez, K. M.; T. Delord, Inorg. Chem., 1988, 27, 821.
    (12) Shieh, M.; Ho, L.-F.; Jang, L.-F.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Commun., 2001, 1014.
    (13) (a) W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1986, 25, 56. (b) Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem., 1990, 100, 223; (c) Fenske, D. ; Ohmer, J. Hachgenei J.; and K. Merzweiler, Angew. Chem., Int. Ed. Engl., 1988, 27, 1277. (d) Roof, L. C.and Kolis, J. W. Chem. Rev., 1993, 93, 1037. (e) L. Y. Goh, Coord. Chem. Rev., 1999, 257, 185.
    (14) (a) Shieh, M.; Chern, J.-J.; Lai, Y.-W.; Liu Y.-H.; Peng, S.-M.; Ueng, C.-H. Inorg. Chem. 2001, 40, 1206. (b) Shieh, M.; Chern, J.-J.; Lai, Y.-W.; Liu Y.-H.; Peng, S.-M.; Ueng, C.-H. Chem.─Eur. J. 2002, 8, 4522. (c) Shieh, M.; Ho, L.-F.; Guo, Y.-W.; Lin, S.-F.; Lin, Y.-C.; Peng, S.-M.; Liu, Y.-H. Organometallics 2003, 22, 5020.
    (15) (a) Frey, M. ChemBioChem 2002, 3, 153. (b) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245. (c) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853. (d) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273. (e) Fan, H. J.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828.
    (16) 詹莉芬,國立臺灣師範大學碩士論文,1997。
    (17) Sellmann, D.; Prakash, R.; Heinemann, W. H. Dalton Trans. 2004, 3991.
    (18) (a) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W. Tetrahedron Lett. 2002, 43, 7899 (b) Amatore, C.; Cammoun, C. Jutand, A., Eur. J. Org. Chem. 2008, 4567 (c) Mitsudo, K.; Shiraga, T.; Kagen, D.; Shi, D.; Becker, J. Y.; Tanaka, H. Tetrahedron 2009, 65, 8384.
    (19) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    (20) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
    (21) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
    (22) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066; (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    (23) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    (24) Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33.
    (25) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    (26) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155 (b) Becke, A. D., J. Chem. Phys. 1992, 97, 9173 (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648.
    (27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (28) (a) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187. (b) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.
    2.12 參考文獻
    (1) (a) Braunstein, P., Rosé, J. In Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Eds.; Wiley-VCH: New York, 1998; Chapter 13. pp 443─508. (b) Braunstein, P., Rosé, J. In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 2, Chapter 2.2, pp 616─677. (c) Adams, R. D. Heteronuclear Metal─Metal Bonds. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 10. (d) Sinfelt, J. H. Bimetallic Catalysts. Discoveries, Concepts and Applications; Wiley: New York, 1983. (e) Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knözinger, H., Eds.; Studies in Surface Science and Catalysis Series; Elsevier: Amsterdam, 1986; Vol. 29. (f) Hermans, S., Khimyak, T., Raja, R., Sankar, G., Thomas, J. M., Johnson, B. F. G. In Nanotechnology in Catalysis; Zhou, B., Hermans, S., Somorjai, G. A., Eds.; Kluwer Academic, Plenum Publishers: New York, 2004. (g) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20─30. (h) Adams, R. D.; Captain, B. Acc. Chem. Res. 2009, 42, 409. (i) Pignolet, L. H.; Aubart, M. A.; Craighead, K. L.; Gould, R. A. T.; Krogstad, D. A.; Wiley, J. S. Coord. Chem. Rev. 1995, 143, 219. (j) Sivaramakrishna, A.; Clayton, H. S.; Makhubela, B. C. E.; Moss, J. R. Coord. Chem. Rev. 2008, 252, 1460. (k) Park, J. H.; Chang, K.-M.; Chung, Y. K. Coord. Chem. Rev. 2009, 253, 2461. (l) Sinfelt, J. H. Acc. Chem. Res. 1977, 10, 15. (m) Adams, R. D.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 252. (n) Thomas, J. M.; Raja, R.; Lewis, D. W. Angew. Chem., Int. Ed. 2005, 44, 6456. (o) Mandal, S. K.; Roesky, H. W. Acc. Chem. Res. 2010, 43, 248. (p) van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998, 54, 12985.
    (2) (a) Raja, R.; Sankar, G.; Hermans, S.; Shephard, D. S.; Bromley, S.; Thomas, J. M.; Johnson, B. F. G. Chem. Commun. 1999, 1571. (b) Johnson, B. F. G. Top. Catal. 2003, 24, 147. (c) Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Hermans, S.; Jones, M. D.; Khimyak, T. Ind. Eng. Chem. Res. 2003, 42, 1563. (d) Thomas, J. M.; Adams, R. D.; Boswell, E. M.; Captain, B.; Grönbeck, H.; Raja, R. Faraday Discuss. 2008, 138, 301. (e) Alexeev, O. S.; Gates, B. C. Ind. Eng. Chem. Res. 2003, 42, 1571. (f) Adams, R. D.; Trufan, E. Phil. Trans. R. Soc. A 2010, 368, 1473. (g) Li, C.; Cheng, S.; Tjahjono, M.; Schreyer, M.; Garland, M. J. Am. Chem. Soc. 2010, 132, 4589. (h) Park, J. Y.; Zhang, Y.; Grass, M.; Zhang, T.; Somorjai, G. A. Nano Lett. 2008, 8, 673. (i) Choudhary, V. R.; Chaudhari, P. A.; Narkhede, V. S. Catal. Commun. 2003, 4, 171. (j) Sreekanth, P. M.; Peña, D. A.; Smirniotis, P. G. Ind. Eng. Chem. Res. 2006, 45, 6444.
    (3) (a) Kahn, O. Molecular Magnetism; VCH: Weinheim, 1993. (b) Mathonière, C., Sutter, J.-P., Yakhmi, J. V. Bimetallic magnets: Present and perspectives. In Magnetism: molecules to materials; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, 2002; Vol. 4. (c) Sun, H.-L.; Wang, Z.-M.; Gao, S. Coord. Chem. Rev. 2010, 254, 1081─1100. (d) Marinescu, G.; Andruh, M.; Lloret, F.; Julve, M. Coord. Chem. Rev. 2011, 255, 161─185. (e) Clemente-Leόn, M.; Coronado, E.; Martí-Gastaldo, C.; Romero, F. M. Chem. Soc. Rev. 2011, 40, 473─497. (f) Mroziński, J. Coord. Chem. Rev. 2005, 249, 2534─2548. (g) Przychodzeń, P.; Korzeniak, T.; Podgajny, R.; Sieklucka, B. Coord. Chem. Rev. 2006, 250, 2234─2260. (h) Clemente-Juan, J. M.; Coronado, E. Coord. Chem. Rev. 1999, 193─195, 361─394.
    (4) (a) Robinson, I.; Zacchini, S.; Tung, L. D.; Maenosono, S.; Thanh, N. T. K. Chem. Mater. 2009, 21, 3021─3026. (b) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Wolowska, J.; Zacchini, S.; Zanello, P.; Fedi, S.; Riccò, M.; Pontiroli, D.; Mazzani, M. J. Am. Chem. Soc. 2010, 132, 2919─2927. (c) Albano, V. G.; Grossi, L.; Longoni, G.; Monari, M.; Mulley, S.; Sironi, A. J. Am. Chem. Soc. 1992, 114, 5708─5713. (d) Riccò, M.; Shiroka, T.; Carretta, S.; Bolzoni, F.; Femoni, C.; Iapalucci, M. C.; Longoni, G. Chem.─Eur. J. 2005, 11, 2856─2861. (e) Eichhöfer, A.; Olkowska-Oetzel, J.; Fenske, D.; Fink, K.; Mereacre, V.; Powell, A. K.; Buth, G. Inorg. Chem. 2009, 48, 8977─8984. (f) Muratsugu, S.; Sodeyama, K.; Kitamura, F.; Sugimoto, M.; Tsuneyuki, S.; Miyashita, S.; Kato, T.; Nishihara, H. J. Am. Chem. Soc. 2009, 131, 1388─1389. (g) Triki, S.; Bérézovsky, F.; Pala, J. S.; Gómez-García, C. J.; Coronado, E.; Costuas, K.; Halet, J.-F. Inorg. Chem. 2001, 40, 5127─5132. (h) Costa, M.; Della Pergola, R.; Fumagalli, A.; Laschi, F.; Losi, S.; Macchi, P.; Sironi, A.; Zanello, P. Inorg. Chem. 2007, 46, 552─560. (i) Bruce, M. I.; Costuas, K.; Davin, T.; Ellis, B. G.; Halet, J.-F.; Lapinte, C.; Low, P. J.; Smith, M. E.; Skelton, B. W.; Toupet, L.; White, A. H. Organometallics 2005, 24, 3864─3881. (j) Prinz, M.; Kuepper, K.; Taubitz, C.; Raekers, M.; Khanra, S.; Biswas, B.; Weyhermüller, T.; Uhlarz, M.; Wosnitza, J.; Schnack, J.; Postnikov, A. V.; Schröder, C.; George, S. J.; Neumann, M.; Chaudhuri, P. Inorg. Chem. 2010, 49, 2093─2102. (k) Rohmer, M.-M.; Liu, I. P.-C.; Lin, J.-C.; Chiu, M.-J.; Lee, C.-H.; Lee, G.-H.; Bénard, M.; Lόpez, X.; Peng, S.-M. Angew. Chem. Int. Ed. 2007, 46, 3533─3536. (l) Liu, I. P.-C.; Chen, C.-H.; Chen, C.-F.; Lee, G.-H.; Peng, S.-M. Chem. Commun. 2009, 577─579. (m) Bechlars, B.; Issac, I.; Feuerhake, R.; Clérac, R.; Fuhr, O.; Fenske, D. Eur. J. Inorg. Chem. 2008, 1632─1644 (n) Shieh, M.; Chung, R.-L.; Yu, C.-H.; Hsu, M.-H.; Ho, C.-H.; Peng, S.-M.; Liu, Y.-H. Inorg. Chem. 2003, 42, 5477─5479.
    (5) (a) Bai, J.; Virovets, A. V.; Scheer, M. Science 2003, 300, 781─783. (b) Kong, X.-J.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. Acc. Chem. Res. 2010, 43, 201─209. (c) Femoni, C.; Iapalucci, M. C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580─1604. (d) Welsch, S.; Gröger, C.; Sierka, M.; Scheer, M. Angew. Chem. Int. Ed. 2011, 50, 1435─1438. (e) Scheer, M.; Schindler, A.; Bai, J.; Johnson, B. P.; Merkle, R.; Winter, R.; Virovets, A. V.; Peresypkina, E. V.; Blatov, V. A.; Sierka, M.; Eckert, H. Chem.─Eur. J. 2010, 16, 2092─2107. (f) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Svensson, P. H. Chem. Commun. 2004, 2274─2275. (g) Bernardi, A.; Femoni, C.; Iapalucci, M. C.; Longoni, G.; Ranuzzi, F.; Zacchini, S.; Zanello, P.; Fedi, S. Chem.─Eur. J. 2008, 14, 1924─1934. (h) de Silva, N.; Dahl, L. F. Inorg. Chem. 2006, 45, 8814─8816. (i) Mednikov, E. G.; Jewell, M. C.; Dahl, L. F. J. Am. Chem. Soc. 2007, 129, 11619─11630. (j) Scheer, M.; Schindler, A.; Merkle, R.; Johnson, B. P.; Linseis, M.; Winter, R.; Anson, C. E.; Virovets, A. V. J. Am. Chem. Soc. 2007, 129, 13386─13387. (k) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Zacchini, S.; Zarra, S. J. Am. Chem. Soc. 2011, 133, 2406─2409.
    (6) (a) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757─3778. (b) Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845─910. (c) Thurston, J. H.; Ely, T. O.; Trahan, D.; Whitmire, K. H. Chem. Mater. 2003, 15, 4407─4416. (d) Ghosh, T.; Leonard, B. M.; Zhou, Q.; Disalvo, F. J. Chem. Mater. 2010, 22, 2190─2202. (e) Hofmann, C.; Rusakova, I.; Ould-Ely, T.; Prieto-Centuriόn, D.; Hartman, K. B.; Kelly, A. T.; Lüttge, A.; Whitmire, K. H. Adv. Funct. Mater. 2008, 18, 1661─1667. (f) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Tiozzo, C.; Zacchini, S. Angew. Chem. Int. Ed. 2008, 47, 6666─6669. (g) Naitabdi, A.; Toulemonde, O.; Bucher, J. P.; Rosé, J.; Braunstein, P.; Welter, R.; Drillon, M. Chem.─Eur. J. 2008, 14, 2355─2362. (h) Hamm, G.; Becker, C.; Henry, C. R. Nanotechnology 2006, 17, 1943─1947. (i) Schweyer-Tihay, F.; Estournès, C.; Braunstein, P.; Guille, J.; Paillaud, J.-L.; Richard-Plouet, M.; Rosé, J. Phys. Chem. Chem. Phys. 2006, 8, 4018─4028.
    (7) (a) Fenske, D. ; Ohmer, J. ; Hachgenei, J.; Merzweiler, K. Angew. Chem. In,. Ed. Engl. 1988, 27, 1277─1296. (b) Krebs, B ; Henkel, G. Angew. Chem. In,. Ed. Engl. 1991, 30, 769─788. (c) Roof, L.C.;Kolis, J. W. Chem. Rev. 1993, 93, 1037─1080. (d) Herrmann, W.A. Angew. Chem. In,. Ed. Engl. 1986, 25, 47─56. (e) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95─204.
    (8) Femoni, C.; Iapalucci, M.C.; Kaswalder, F.; Longoni,G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580.
    (9) (a) Whitmire, K. H. Lagrone, C. B.; Rheingold, A. L. J. Inorg. Chem. 1986, 25, 2470─2472. (b) Hlavinka, H. L.; Miyaji, T; Staples, R. J.; Holm, R. H. Inorg. Chem. 2007, 46, 9192─9200. (c) Scott,T. A.; Holm, R. H. Inorg. Chem. 2008, 476, 3426─3432.
    (10) Hieber, W.; Gruber, J. Z. Allg.Chem. 1958, 296, 91─103.
    (11) (a) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421. (b) Adams, R. D.; Miao, S. J. Organomet. Chem. 2003, 665, 43. (c) Adams, R. D.; Kwon, O.-S.; Miao, S. Acc. Chem. Res. 2005, 38, 183. (d) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2001, 40, 5322. (e) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2002, 41, 6281. (f) Adams, R. D.; Miao, J.; Smith, M. D. Organometallics 2004, 23, 3327. (g) Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem., Int. Ed. Engl. 1997, 36, 1854. (h) Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. Organometallics 1993, 12, 1009. (i) Alper, H.; Sibtain, F.; Einstein, F. W. B.; Willis, A. C. Organometallics 1985, 4, 604. (j) Reyes-Lezama, M.; Höpfl, H.; Zúñiga-Villarreal, N. J. Organomet. Chem. 2008, 693, 987.
    (12) (a) Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1996,
    35, 1710. (b) O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134.
    (13) (a) Belletti, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Eur. J. Inorg. Chem. 2004, 3564. (b) Reyes-Lezama, M.; Höpfl, H.; Zúñiga-Villarreal, N. Organometallics 2010, 29, 1537.
    (14) (a) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Chem.−Eur. J. 2001, 7, 3152. (b) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. 1999, 38, 1252.
    (15) Adams, R. D.; Miao, S.; Smith, M. D., Farach, H., Webster, C. E., Manson, J., Hall, M. B. Inorg. Chem. 2004, 43, 2515.
    (16) Harakas, G.N.; Whittlesey, B. R. J. Am. Chem. Soc. 1996, 118, 4210─4211.
    (17) (a) Schauer, C. K.; Shriver, D. F. Inorg. Chem. 1987, 26, 255─256. (b) Schauer, C. K.; Harris, S.; Sabat, M.; Voss, E. J.; Shriver, D. F. Angew. Chem., Int. Ed. 1995, 34, 5017─5028.
    (18) Shieh, M.; Tang, T.-F. Peng, S.-M. Lee, G.-H. Inorg. Chem. 1995, 34, 2797─2803.
    (19) Whitmire, K. H.; Adam C. C. Organometallics, 2010, 29, 4611–4618.
    (20) Shieh, M.; Huang, Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M. Angew. Chem., Int. Ed. 1997, 36, 4421.
    (21) (a) Curtis, M. D.; Han, K. R.; Butler, W. M. Inorg. Chem. 1980, 19, 2096─2101. (b) Klingler, R. J.; Butler, W. M.; Curtis, M. D. J. Am. Chem. Soc. 1978, 100, 5034─5039.
    (22) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng C.-H. Chem.─Eur. J. 2001, 7, 3152─3158.
    (23) Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1710.
    (24) Seyferth, D.; Henderson, S. R.; Fackler J. P.; Mazany A. M. J. Organomet. Chem. 1981, 213, C21─C25.
    (25) (a) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W., Tetrahedron Lett. 2002, 43, 7899-7902; (b) Amatore, C.; Cammoun, C.; Jutand, A., Eur. J. Org. Chem. 2008, 4567-4570; (c) Mitsudo, K.; Shiraga, T.; Kagen, D.; Shi, D.; Becker, J. Y.; Tanaka, H., Tetrahedron 2009, 65, 8384─8388.
    (26) Becke, A. D., Phys. Rev. A 1988, 38, 3098-3100.
    (27) Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200─1211.
    (28) Perdew, J. P., Phys. Rev. B 1986, 33, 8822-8824.
    (29) Cheng, G.; Luo, M., Eur. J. Org. Chem. 2011, 2519─2523.
    (30) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X., Chem. Sci. 2010, 1, 326─330.
    (31) (a) Barone, V.; Cossi, M., J. Phys. Chem. A 1998, 102, 1995─2001; (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., J. Comput. Chem. 2003, 24, 669-681.
    (32) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297─3305.
    (33) Shriver, D. F.; Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    (34) Blessing, R. H., Acta Crystallogr., Sect. A 1995, 51, 33─38.
    (35) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    (36) N. Belfguira, S. Walha, A. Kabadou, A. B. Salah, F. Hatert, A. M. Fransolet, J. Chem. Crystallogr. 2011, 41, 370─374.
    (37) (a) Becke, A. D., J. Chem. Phys. 1992, 96, 2155-2160; (b) Becke, A. D., J. Chem. Phys. 1992, 97, 9173-9177; (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648─5652.
    (38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (39) (a) Gorelsky, S. I.; Lever, A. B. P., J. Organomet. Chem. 2001, 635, 187-196; (b) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.
    (40) 由國立臺灣師範大學,林建男未發表之博士論文。
    3.7 參考文獻
    (1) (a) Fenske, D. ; Ohmer, J. ; Hachgenei, J.; Merzweiler, K. Angew. Chem. In,. Ed. Engl. 1988, 27, 1277─1296. (b) Krebs, B ; Henkel, G. Angew. Chem. In,. Ed. Engl. 1991, 30, 769─788. (c) Roof, L.C.;Kolis, J. W. Chem. Rev. 1993, 93, 1037─1080. (d) Herrmann, W.A. Angew. Chem. In,. Ed. Engl. 1986, 25, 47─56. (e) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95─204.
    (2) (a) Somorjai, G. A. Chemistry in Two Dimension; Cornell University Press: New York, 1981. (b) Lin, Y. C.;Lu, K. H. Chemistry 1991, 49, 303. (c) Douglas, B.; Mcdaniel, D; Alexander, J. Concepts and Models of Inorganic Chemistry 3rd Wiley, 1994.
    (3) (a) Whitmire, K. H. Lagrone, C. B.; Rheingold, A. L. J. Inorg. Chem. 1986, 25, 2470─2472. (b) Hlavinka, H. L.; Miyaji, T; Staples, R. J.; Holm, R. H. Inorg. Chem. 2004, 46, 9192─9200. (c) Scott,T. A.; Holm, R. H. Inorg. Chem. 2008, 476, 3426─3432.
    (4) (a) Cotton, F. A.; Wilkinson, G. Ad V anced Inorganic Chemistry, 5th ed.; John Wiley and Sons: New York, 1988; p 1053. (b) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH: New York, 1990. (c) Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 1 - 3. (d) Hwu, S.-J.; Corbett, J. D. J. Solid State Chem. 1986, 64, 331. (e) Harakas, G. N.; Whittlesey, B. R. J. Am. Chem. Soc. 1996, 118, 4210.
    (5) Shieh, M.; Chung, R.-L.; Yu, C.-H.; Hsu, M.-H.; Peng S.-M. Inorg. Chem. 2003, 42, 5477.
    (6) 鍾瑞霖,國立臺灣師範大學碩士畢業論文,2000年。
    (7) Shriver, D. F.; Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
    (8) Blessing, R. H., Acta Crystallogr., Sect. A 1995, 51, 33─38.
    (9) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    (10) (a) Becke, A. D., J. Chem. Phys. 1992, 96, 2155-2160; (b) Becke, A. D., J. Chem. Phys. 1992, 97, 9173-9177; (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648─5652.
    (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (12) Becke, A. D., Phys. Rev. A 1988, 38, 3098-3100.
    (13) Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200-1211
    (14) Perdew, J. P., Phys. Rev. B 1986, 33, 8822-8824.
    (15) (a) Barone, V.; Cossi, M., J. Phys. Chem. A 1998, 102, 1995─2001; (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., J. Comput. Chem. 2003, 24, 669-681.
    (16) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664 .
    (17) 由國立臺灣師範大學,邢凱捷未發表之博士論文。

    下載圖示
    QR CODE