研究生: |
詹昂 Ang Chan |
---|---|
論文名稱: |
含十六族元素(硫、硒、碲)與過渡金屬(鉻、錳、鐵)之團簇化合物的合成與反應探討以及化性與物性研究 |
指導教授: | 謝明惠 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 189 |
中文關鍵詞: | 16族元素 、團簇化合物 、錳 、鉻 、鐵 、氫氣 、電化學 |
英文關鍵詞: | chalcogens, cluster compounds, manganese, chromium, iron, hydrogen, electrochemistry |
論文種類: | 學術論文 |
相關次數: | 點閱:203 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
E–Cr (E = S, Se)系統
取硫粉末或是 SeO2 與 Cr(CO)6 於80 ~ 85 oC 下以2:3的比例在鹼性甲醇溶液中,加熱反應可得雙三角錐結構的 [HE2Cr3(CO)9]3– (E = S, 1a; Se, 1b),有趣的是當 1a 或 1b 在 – 40oC 低溫且充滿 CO 的環境下,加入兩當量的醋酸,可分別得到 [E2Cr3(CO)10]2– (E = S, 1a; Se, 1b) 伴隨著氫氣的產生。進一步我們將 2a 和 2b 分別與兩當量的 KOH 溶於MeCN/MeOH中並加熱至80 oC ,可逆反應生成 1a 和 1b。另一方面Na2S 和Cr(CO)6 於90 oC下以莫耳比2: 3在甲醇溶液中反應36小時,可得化合物 2a,並有效的提生產率由20 %至54 %。
此外我們將1a 分別與有機鹵化物 RX (R = PhCH2,X = Br;R = Ph,X = I) 反應可得到化合物 [S4Cr5(CO)14]3– (3),並伴隨著 Toluene 以及 Benzene的生成,相同地,1b 和 PhCH2Br 反應也可得到有機產物 Toluene,但與 PhI卻無反應發生。同時藉由理論計算對一系列化合物之電子結構、電化學進行分析與討論。
E–Mn–Fe (E = Se, Te)系統
取適量 E (E = Se、Te) powder 與 Mn2(CO)10 和 Fe(CO)5 及 [PPN]Cl 於75 oC下以莫耳比2: 1: 1: 1在1.66M KOH 甲醇溶液中反應,可得混和 Mn─Fe 的四角錐金屬團簇物 [E2Mn2Fe(CO)9]2– (E = Se, 1; Te, 2),有鑑於 X-ray 上無法分辨錳和鐵原子,因此利用密度泛函數理論 (Density Fuctional Theory) 進行分子的紅外線光譜模擬,證實此四角錐之底部四邊形是由 E2Mn2 以對位的形式構成,頂端蓋接 Fe(CO)3 片段。
再者,將四角錐錯合物1 分別與一當量 Fe(CO)5 和 Mn2(CO)10與適量 KOH 溶於 CH2Cl2/MeOH 下進行擴核反應,可得到不同金屬比例的八面體形結構化合物 [Se2Fe2Mn2(CO)11]2– (3) 和 [Se2FeMn3(CO)11]2– (4) 。化合物4亦可由 [Se2Mn3(CO)9]– 於冰浴下與一當量 [HFe(CO)4]– 進行擴核反應得到。進一步藉由理論計算對一系列混和錳鐵化合物之電子結構以及電化學進行分析與討論。
E–Cr–Fe (E =S, Se, Te)系統
取適量 S powder與 Cr(CO)6 和 Fe(CO)5 及 [PPN]Cl 於85 oC下以莫耳比1: 1: 1: 2 於2 M KOH 的甲醇溶液中反應,可得到主族為硫且混和鉻和鐵的八面體結構化合物 [S2Cr2Fe2(CO)12]2– (1)。將主族改變為硒,並將莫耳比改為1: 1: 1: 2,可得到一混和鉻鐵團簇化合物 [Se2CrFe3(CO)11]2– (2),根據 X-ray 單晶繞射分析顯示1和2均為八面體構形且E (E = S, Se) 原子分別蓋接在 M4 (M = Cr or Fe) 金屬環上方以及下方,但若將主族改變為碲,而莫耳比改為2: 1: 2: 2,卻得 arachano 錯合物 [Te2CrFe2(CO)10]2– (3),X-ray 單晶繞射分析顯示結構 3 底部為一蝴蝶構形的Te2Fe2(CO)9,再由一Cr(CO)4 片段橋接在Te2 上。進一步我們將化合物 2 於80 oC 1 M KOH的甲醇及乙氰溶液中反應可得到雙三角錐化合物 [Se2Cr2Fe(CO)9]2– (4). 並藉由理論計算對一系列混和鉻鐵化合物之電子結構以及電化學進行分析與討論。
關鍵字: 16 族元素、團簇化合物、錳、鉻、鐵、氫氣、電化學。
E–Cr (E = S, Se) System
The reaction of sulfur powder or SeO2 with Cr(CO)6 in molar ratio of 2: 3 in KOH/MeOH/hexanes solutions at 80 oC formed a selenium-capping trichromium closo-trigonal-bipyramidal (TBP) carbonyl hydride clusters [HE2Cr3(CO)9]3– (E = S, 1a; Se, 1b). Interestingly, the deprotonation of 1a and 1b using acetic acid under CO atmosphere at –40oC rapidly released H2 and afforded selenium-capping trichromium TBP dianionic clusters [E2Cr3(CO)10]2– (E = S , 2a; Se, 2b), respectively. Conversely, clusters 2a and 2b could be reconverted to 1a and 1b by the treatment with two equivalents of KOH in MeCN/MeOH solutions at 80 oC. On the other hand, when Na2S reacted with Cr(CO)6 in molar ratio of 2: 3 in MeOH solutions at 90 oC, cluster 2 was formed, efficiently increasing the yield from 20 % to 54 %.
Additionally, when cluster 1a reacted with organic halides RX (R = PhCH2,X = Br;R = Ph,X = I), the Cr-linked S2Cr2(CO)-based cluster [S4Cr5(CO)14]3– (3) was obtained along with the formation of toluene and benzene, respectively. Likewise, the reaction of 1b with PhCH2Br gave 3 and toluene. However, no reaction was observed for the reaction of 1b with PhI. Furthermore, the nature and electrochemical studies of the resultant clusters were studied and elucidated with the aid of molecular calculations of the density functional theory.
E–Mn–Fe (E = Se, Te) System
When E powder, Fe(CO)5, Mn2(CO)10, and [PPN]Cl were mixed in concentrated KOH methanolic solutions in molar ratio of 2: 1: 1: 1 at 75 oC , the mixed Fe–Mn square-pyramidal clusters [E2FeMn2(CO)9]2– (E = Se, 1; Te, 2) were obtained, respectively. X-ray analysis revealed that clusters 1 and 2 were isostructural, in which the trans-E2Mn2 square was capped by an apical Fe(CO)3 fragment. Further studies showed that 1 can undergo cluster-growth reactions by the treatments of Fe(CO)5 and Mn2(CO)10 in KOH/MeOH solution to form mixed Fe–Mn octahedral complexes [Se2Fe2Mn2(CO)11]2– (3) and [Se2FeMn3(CO)11]2– (4), respectively. Clusters 2 and 3 were isostructures, and the M4 (M = Mn or Fe) ring was capped above and below by the Se atoms. Cluster 4 could was also obtained from the reaction of homometallic trigonal-bipyramidal cluster [Se2Mn3(CO)9]– with [HFe(CO)4]– under controlled conditions. The electrochemical studies showed two series of mixed Mn–Fe clusters possessed rich redox capabilities. Further, the nature, formation, and electrochemistry of these mixed Fe–Mn carbonyl clusters were studied and elucidated with the aid of molecular calculations of the density functional theory.
E–Cr–Fe (E = Se, Te) System
When S powder, Cr(CO)6, Fe(CO)5, and [PPN]Cl were mixed in concentrated KOH methanolic solutions in molar ratio of 1: 1: 1: 2 at 80 oC , a mixed Cr–Fe octeahedral cluster [S2Cr2Fe2(CO)12]2– (1) was obtained. On the other hand, Se powder could reacted with Cr(CO)6, Fe(CO)5, and [PPN]Cl in concentrated KOH methanolic solutions in molar ratio of 2: 1: 3: 2 at 80 oC to give a new mixed Cr–Fe cluster [Se2CrFe3(CO)11]2– (2). X-ray analysis showed that clusters 1 and 2 each consisted of an octahedral core, where the M4 (M = Cr or Fe) ring was capped above and below by the E atoms (E = S, Se). Besides, when Te powder was used as the chalcogen source under the similar condition, a new arachno-cluster [Te2CrFe2(CO)10]2– (3) was formed. Cluster 3 comprised of a Te2Fe2 butterfly with the “wintip” Te atoms linked by a Cr(CO)4 fragment. Furthermore,the reaction of compound 2 with 1 M KOH/MeOH/MeCN solution at 80 oC produced the trigonal-bipyramidal complex [HSe2CrFe2(CO)9]2– (4). Moreover, the nature, formation, and electrochemistry of these mixed Cr–Fe carbonyl clusters were studied and elucidated with the aid of molecular calculations of the density functional theory.
Keywords: chalcogens, cluster compounds, manganese, chromium, iron,
hydrogen, electrochemistry.
1.7 參考文獻
(1) Bonds, G. C. Heterogeneous Catalysis principles and applications; Oxford University Press: London, 1990, 2nd
(2) (a)Topsoe, In Surface Properties and Catalysis by Non-metalls; Dordrecht, D. R., 1983; p.329. (b) Chianelli, R. R. Cata. Rev. –Sci. Eng. 1984, 26, 361. (c) Brorson, M.; Rink, B.; Scowen, I. J. Organometallics 1999, 18, 2309. (d) Matsubara, K.; Okamure, R; Tanaka, M.; Suzuki, H J. Am. Chem. Soc., 1998, 120, 1108. (e) Tucker, D. S.; Dietz, S.; Parker, K.G.; Garperos,V.; Gabay, J.; Noll B. Rakowski DuBois, M. Organometallics 1995, 14, 4325. (f) Houser, E. J.; Krautscheid, H.; Rauchfuss, T. B.;Wilson, S. R. J. Chem. Commun. 1994, 1283. (g) Riaz, U.; Curnow, O. ; Curtis, M D. J. Am. Chem. Soc., 1991, 113, 1416.
(3) (a) Lin, Y. C.; Lu, K. H. Chemistry 1991, 49, 303. (b) Douglas, B.; Mcdaniel, D; Alexander, J. Concepts and Models of Inorganic Chemistry 3rd Wiley, 1994.
(4) (a) Diéguez, M.; Claver, C.; Masdeu-Bultò, A. M.; Ruiz, A. Organometallics 1999, 18, 2107. (b) Limberg, C.; Hunger, M.; Kircher, P. Angew. Chem., Int. Ed. 1999, 38, 1252. (c) Suss-Fink, G.; Haak, S.; Ferrand, V.; Stoeckli-Evans, H. J. Chem. Soc., Dalton Trans. 1997, 3861.
(5) Haak, S.; Neels, A.; Stoeckli-Evans, H.; Suss-Flink, G.; Thomas, C. M. Chem. Commun. 1999, 1959.
(6) (a) F. A. Cotton, G. Wilkinson, C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, Inc, Singapore, 6th edn., 1999. (b) D. F. Shriver, H. D. Kaesz and R. D. Adams, The Chemistry of Metal Cluster Complexes, VCH, New York, 1990.
(7) Behrens, H. and Haag, W. Chem. Ber., 1961, 94, 320.
(8) Darensbourg, D. J.; Zalewski, D. J. Organometallics, 1984, 3, 1598.
(9) Hoefler, M.; Tebbe, K.-F.; Veit, H.; Weiler, N. E. J. Am. Chem. Soc., 1983, 105, 6338.
(10) J. Borm, G. Huttner and L. Zsolnai, Angew. Chem., Int. Ed. Engl., 1985, 24, 1069.
(11) Darensbourg, D. J.; Zalewski, D. J.; Sanchez, K. M.; T. Delord, Inorg. Chem., 1988, 27, 821.
(12) Shieh, M.; Ho, L.-F.; Jang, L.-F.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Commun., 2001, 1014.
(13) (a) W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1986, 25, 56. (b) Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem., 1990, 100, 223; (c) Fenske, D. ; Ohmer, J. Hachgenei J.; and K. Merzweiler, Angew. Chem., Int. Ed. Engl., 1988, 27, 1277. (d) Roof, L. C.and Kolis, J. W. Chem. Rev., 1993, 93, 1037. (e) L. Y. Goh, Coord. Chem. Rev., 1999, 257, 185.
(14) (a) Shieh, M.; Chern, J.-J.; Lai, Y.-W.; Liu Y.-H.; Peng, S.-M.; Ueng, C.-H. Inorg. Chem. 2001, 40, 1206. (b) Shieh, M.; Chern, J.-J.; Lai, Y.-W.; Liu Y.-H.; Peng, S.-M.; Ueng, C.-H. Chem.─Eur. J. 2002, 8, 4522. (c) Shieh, M.; Ho, L.-F.; Guo, Y.-W.; Lin, S.-F.; Lin, Y.-C.; Peng, S.-M.; Liu, Y.-H. Organometallics 2003, 22, 5020.
(15) (a) Frey, M. ChemBioChem 2002, 3, 153. (b) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245. (c) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853. (d) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273. (e) Fan, H. J.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828.
(16) 詹莉芬,國立臺灣師範大學碩士論文,1997。
(17) Sellmann, D.; Prakash, R.; Heinemann, W. H. Dalton Trans. 2004, 3991.
(18) (a) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W. Tetrahedron Lett. 2002, 43, 7899 (b) Amatore, C.; Cammoun, C. Jutand, A., Eur. J. Org. Chem. 2008, 4567 (c) Mitsudo, K.; Shiraga, T.; Kagen, D.; Shi, D.; Becker, J. Y.; Tanaka, H. Tetrahedron 2009, 65, 8384.
(19) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(20) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
(21) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(22) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066; (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
(23) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
(24) Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33.
(25) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
(26) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155 (b) Becke, A. D., J. Chem. Phys. 1992, 97, 9173 (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648.
(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
(28) (a) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187. (b) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.
2.12 參考文獻
(1) (a) Braunstein, P., Rosé, J. In Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Eds.; Wiley-VCH: New York, 1998; Chapter 13. pp 443─508. (b) Braunstein, P., Rosé, J. In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 2, Chapter 2.2, pp 616─677. (c) Adams, R. D. Heteronuclear Metal─Metal Bonds. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 10. (d) Sinfelt, J. H. Bimetallic Catalysts. Discoveries, Concepts and Applications; Wiley: New York, 1983. (e) Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knözinger, H., Eds.; Studies in Surface Science and Catalysis Series; Elsevier: Amsterdam, 1986; Vol. 29. (f) Hermans, S., Khimyak, T., Raja, R., Sankar, G., Thomas, J. M., Johnson, B. F. G. In Nanotechnology in Catalysis; Zhou, B., Hermans, S., Somorjai, G. A., Eds.; Kluwer Academic, Plenum Publishers: New York, 2004. (g) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20─30. (h) Adams, R. D.; Captain, B. Acc. Chem. Res. 2009, 42, 409. (i) Pignolet, L. H.; Aubart, M. A.; Craighead, K. L.; Gould, R. A. T.; Krogstad, D. A.; Wiley, J. S. Coord. Chem. Rev. 1995, 143, 219. (j) Sivaramakrishna, A.; Clayton, H. S.; Makhubela, B. C. E.; Moss, J. R. Coord. Chem. Rev. 2008, 252, 1460. (k) Park, J. H.; Chang, K.-M.; Chung, Y. K. Coord. Chem. Rev. 2009, 253, 2461. (l) Sinfelt, J. H. Acc. Chem. Res. 1977, 10, 15. (m) Adams, R. D.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 252. (n) Thomas, J. M.; Raja, R.; Lewis, D. W. Angew. Chem., Int. Ed. 2005, 44, 6456. (o) Mandal, S. K.; Roesky, H. W. Acc. Chem. Res. 2010, 43, 248. (p) van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998, 54, 12985.
(2) (a) Raja, R.; Sankar, G.; Hermans, S.; Shephard, D. S.; Bromley, S.; Thomas, J. M.; Johnson, B. F. G. Chem. Commun. 1999, 1571. (b) Johnson, B. F. G. Top. Catal. 2003, 24, 147. (c) Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Hermans, S.; Jones, M. D.; Khimyak, T. Ind. Eng. Chem. Res. 2003, 42, 1563. (d) Thomas, J. M.; Adams, R. D.; Boswell, E. M.; Captain, B.; Grönbeck, H.; Raja, R. Faraday Discuss. 2008, 138, 301. (e) Alexeev, O. S.; Gates, B. C. Ind. Eng. Chem. Res. 2003, 42, 1571. (f) Adams, R. D.; Trufan, E. Phil. Trans. R. Soc. A 2010, 368, 1473. (g) Li, C.; Cheng, S.; Tjahjono, M.; Schreyer, M.; Garland, M. J. Am. Chem. Soc. 2010, 132, 4589. (h) Park, J. Y.; Zhang, Y.; Grass, M.; Zhang, T.; Somorjai, G. A. Nano Lett. 2008, 8, 673. (i) Choudhary, V. R.; Chaudhari, P. A.; Narkhede, V. S. Catal. Commun. 2003, 4, 171. (j) Sreekanth, P. M.; Peña, D. A.; Smirniotis, P. G. Ind. Eng. Chem. Res. 2006, 45, 6444.
(3) (a) Kahn, O. Molecular Magnetism; VCH: Weinheim, 1993. (b) Mathonière, C., Sutter, J.-P., Yakhmi, J. V. Bimetallic magnets: Present and perspectives. In Magnetism: molecules to materials; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, 2002; Vol. 4. (c) Sun, H.-L.; Wang, Z.-M.; Gao, S. Coord. Chem. Rev. 2010, 254, 1081─1100. (d) Marinescu, G.; Andruh, M.; Lloret, F.; Julve, M. Coord. Chem. Rev. 2011, 255, 161─185. (e) Clemente-Leόn, M.; Coronado, E.; Martí-Gastaldo, C.; Romero, F. M. Chem. Soc. Rev. 2011, 40, 473─497. (f) Mroziński, J. Coord. Chem. Rev. 2005, 249, 2534─2548. (g) Przychodzeń, P.; Korzeniak, T.; Podgajny, R.; Sieklucka, B. Coord. Chem. Rev. 2006, 250, 2234─2260. (h) Clemente-Juan, J. M.; Coronado, E. Coord. Chem. Rev. 1999, 193─195, 361─394.
(4) (a) Robinson, I.; Zacchini, S.; Tung, L. D.; Maenosono, S.; Thanh, N. T. K. Chem. Mater. 2009, 21, 3021─3026. (b) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Wolowska, J.; Zacchini, S.; Zanello, P.; Fedi, S.; Riccò, M.; Pontiroli, D.; Mazzani, M. J. Am. Chem. Soc. 2010, 132, 2919─2927. (c) Albano, V. G.; Grossi, L.; Longoni, G.; Monari, M.; Mulley, S.; Sironi, A. J. Am. Chem. Soc. 1992, 114, 5708─5713. (d) Riccò, M.; Shiroka, T.; Carretta, S.; Bolzoni, F.; Femoni, C.; Iapalucci, M. C.; Longoni, G. Chem.─Eur. J. 2005, 11, 2856─2861. (e) Eichhöfer, A.; Olkowska-Oetzel, J.; Fenske, D.; Fink, K.; Mereacre, V.; Powell, A. K.; Buth, G. Inorg. Chem. 2009, 48, 8977─8984. (f) Muratsugu, S.; Sodeyama, K.; Kitamura, F.; Sugimoto, M.; Tsuneyuki, S.; Miyashita, S.; Kato, T.; Nishihara, H. J. Am. Chem. Soc. 2009, 131, 1388─1389. (g) Triki, S.; Bérézovsky, F.; Pala, J. S.; Gómez-García, C. J.; Coronado, E.; Costuas, K.; Halet, J.-F. Inorg. Chem. 2001, 40, 5127─5132. (h) Costa, M.; Della Pergola, R.; Fumagalli, A.; Laschi, F.; Losi, S.; Macchi, P.; Sironi, A.; Zanello, P. Inorg. Chem. 2007, 46, 552─560. (i) Bruce, M. I.; Costuas, K.; Davin, T.; Ellis, B. G.; Halet, J.-F.; Lapinte, C.; Low, P. J.; Smith, M. E.; Skelton, B. W.; Toupet, L.; White, A. H. Organometallics 2005, 24, 3864─3881. (j) Prinz, M.; Kuepper, K.; Taubitz, C.; Raekers, M.; Khanra, S.; Biswas, B.; Weyhermüller, T.; Uhlarz, M.; Wosnitza, J.; Schnack, J.; Postnikov, A. V.; Schröder, C.; George, S. J.; Neumann, M.; Chaudhuri, P. Inorg. Chem. 2010, 49, 2093─2102. (k) Rohmer, M.-M.; Liu, I. P.-C.; Lin, J.-C.; Chiu, M.-J.; Lee, C.-H.; Lee, G.-H.; Bénard, M.; Lόpez, X.; Peng, S.-M. Angew. Chem. Int. Ed. 2007, 46, 3533─3536. (l) Liu, I. P.-C.; Chen, C.-H.; Chen, C.-F.; Lee, G.-H.; Peng, S.-M. Chem. Commun. 2009, 577─579. (m) Bechlars, B.; Issac, I.; Feuerhake, R.; Clérac, R.; Fuhr, O.; Fenske, D. Eur. J. Inorg. Chem. 2008, 1632─1644 (n) Shieh, M.; Chung, R.-L.; Yu, C.-H.; Hsu, M.-H.; Ho, C.-H.; Peng, S.-M.; Liu, Y.-H. Inorg. Chem. 2003, 42, 5477─5479.
(5) (a) Bai, J.; Virovets, A. V.; Scheer, M. Science 2003, 300, 781─783. (b) Kong, X.-J.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. Acc. Chem. Res. 2010, 43, 201─209. (c) Femoni, C.; Iapalucci, M. C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580─1604. (d) Welsch, S.; Gröger, C.; Sierka, M.; Scheer, M. Angew. Chem. Int. Ed. 2011, 50, 1435─1438. (e) Scheer, M.; Schindler, A.; Bai, J.; Johnson, B. P.; Merkle, R.; Winter, R.; Virovets, A. V.; Peresypkina, E. V.; Blatov, V. A.; Sierka, M.; Eckert, H. Chem.─Eur. J. 2010, 16, 2092─2107. (f) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Svensson, P. H. Chem. Commun. 2004, 2274─2275. (g) Bernardi, A.; Femoni, C.; Iapalucci, M. C.; Longoni, G.; Ranuzzi, F.; Zacchini, S.; Zanello, P.; Fedi, S. Chem.─Eur. J. 2008, 14, 1924─1934. (h) de Silva, N.; Dahl, L. F. Inorg. Chem. 2006, 45, 8814─8816. (i) Mednikov, E. G.; Jewell, M. C.; Dahl, L. F. J. Am. Chem. Soc. 2007, 129, 11619─11630. (j) Scheer, M.; Schindler, A.; Merkle, R.; Johnson, B. P.; Linseis, M.; Winter, R.; Anson, C. E.; Virovets, A. V. J. Am. Chem. Soc. 2007, 129, 13386─13387. (k) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Zacchini, S.; Zarra, S. J. Am. Chem. Soc. 2011, 133, 2406─2409.
(6) (a) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757─3778. (b) Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845─910. (c) Thurston, J. H.; Ely, T. O.; Trahan, D.; Whitmire, K. H. Chem. Mater. 2003, 15, 4407─4416. (d) Ghosh, T.; Leonard, B. M.; Zhou, Q.; Disalvo, F. J. Chem. Mater. 2010, 22, 2190─2202. (e) Hofmann, C.; Rusakova, I.; Ould-Ely, T.; Prieto-Centuriόn, D.; Hartman, K. B.; Kelly, A. T.; Lüttge, A.; Whitmire, K. H. Adv. Funct. Mater. 2008, 18, 1661─1667. (f) Femoni, C.; Iapalucci, M. C.; Longoni, G.; Tiozzo, C.; Zacchini, S. Angew. Chem. Int. Ed. 2008, 47, 6666─6669. (g) Naitabdi, A.; Toulemonde, O.; Bucher, J. P.; Rosé, J.; Braunstein, P.; Welter, R.; Drillon, M. Chem.─Eur. J. 2008, 14, 2355─2362. (h) Hamm, G.; Becker, C.; Henry, C. R. Nanotechnology 2006, 17, 1943─1947. (i) Schweyer-Tihay, F.; Estournès, C.; Braunstein, P.; Guille, J.; Paillaud, J.-L.; Richard-Plouet, M.; Rosé, J. Phys. Chem. Chem. Phys. 2006, 8, 4018─4028.
(7) (a) Fenske, D. ; Ohmer, J. ; Hachgenei, J.; Merzweiler, K. Angew. Chem. In,. Ed. Engl. 1988, 27, 1277─1296. (b) Krebs, B ; Henkel, G. Angew. Chem. In,. Ed. Engl. 1991, 30, 769─788. (c) Roof, L.C.;Kolis, J. W. Chem. Rev. 1993, 93, 1037─1080. (d) Herrmann, W.A. Angew. Chem. In,. Ed. Engl. 1986, 25, 47─56. (e) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95─204.
(8) Femoni, C.; Iapalucci, M.C.; Kaswalder, F.; Longoni,G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580.
(9) (a) Whitmire, K. H. Lagrone, C. B.; Rheingold, A. L. J. Inorg. Chem. 1986, 25, 2470─2472. (b) Hlavinka, H. L.; Miyaji, T; Staples, R. J.; Holm, R. H. Inorg. Chem. 2007, 46, 9192─9200. (c) Scott,T. A.; Holm, R. H. Inorg. Chem. 2008, 476, 3426─3432.
(10) Hieber, W.; Gruber, J. Z. Allg.Chem. 1958, 296, 91─103.
(11) (a) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421. (b) Adams, R. D.; Miao, S. J. Organomet. Chem. 2003, 665, 43. (c) Adams, R. D.; Kwon, O.-S.; Miao, S. Acc. Chem. Res. 2005, 38, 183. (d) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2001, 40, 5322. (e) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2002, 41, 6281. (f) Adams, R. D.; Miao, J.; Smith, M. D. Organometallics 2004, 23, 3327. (g) Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem., Int. Ed. Engl. 1997, 36, 1854. (h) Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. Organometallics 1993, 12, 1009. (i) Alper, H.; Sibtain, F.; Einstein, F. W. B.; Willis, A. C. Organometallics 1985, 4, 604. (j) Reyes-Lezama, M.; Höpfl, H.; Zúñiga-Villarreal, N. J. Organomet. Chem. 2008, 693, 987.
(12) (a) Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1996,
35, 1710. (b) O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134.
(13) (a) Belletti, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Eur. J. Inorg. Chem. 2004, 3564. (b) Reyes-Lezama, M.; Höpfl, H.; Zúñiga-Villarreal, N. Organometallics 2010, 29, 1537.
(14) (a) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Chem.−Eur. J. 2001, 7, 3152. (b) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. 1999, 38, 1252.
(15) Adams, R. D.; Miao, S.; Smith, M. D., Farach, H., Webster, C. E., Manson, J., Hall, M. B. Inorg. Chem. 2004, 43, 2515.
(16) Harakas, G.N.; Whittlesey, B. R. J. Am. Chem. Soc. 1996, 118, 4210─4211.
(17) (a) Schauer, C. K.; Shriver, D. F. Inorg. Chem. 1987, 26, 255─256. (b) Schauer, C. K.; Harris, S.; Sabat, M.; Voss, E. J.; Shriver, D. F. Angew. Chem., Int. Ed. 1995, 34, 5017─5028.
(18) Shieh, M.; Tang, T.-F. Peng, S.-M. Lee, G.-H. Inorg. Chem. 1995, 34, 2797─2803.
(19) Whitmire, K. H.; Adam C. C. Organometallics, 2010, 29, 4611–4618.
(20) Shieh, M.; Huang, Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M. Angew. Chem., Int. Ed. 1997, 36, 4421.
(21) (a) Curtis, M. D.; Han, K. R.; Butler, W. M. Inorg. Chem. 1980, 19, 2096─2101. (b) Klingler, R. J.; Butler, W. M.; Curtis, M. D. J. Am. Chem. Soc. 1978, 100, 5034─5039.
(22) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng C.-H. Chem.─Eur. J. 2001, 7, 3152─3158.
(23) Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1710.
(24) Seyferth, D.; Henderson, S. R.; Fackler J. P.; Mazany A. M. J. Organomet. Chem. 1981, 213, C21─C25.
(25) (a) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W., Tetrahedron Lett. 2002, 43, 7899-7902; (b) Amatore, C.; Cammoun, C.; Jutand, A., Eur. J. Org. Chem. 2008, 4567-4570; (c) Mitsudo, K.; Shiraga, T.; Kagen, D.; Shi, D.; Becker, J. Y.; Tanaka, H., Tetrahedron 2009, 65, 8384─8388.
(26) Becke, A. D., Phys. Rev. A 1988, 38, 3098-3100.
(27) Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200─1211.
(28) Perdew, J. P., Phys. Rev. B 1986, 33, 8822-8824.
(29) Cheng, G.; Luo, M., Eur. J. Org. Chem. 2011, 2519─2523.
(30) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X., Chem. Sci. 2010, 1, 326─330.
(31) (a) Barone, V.; Cossi, M., J. Phys. Chem. A 1998, 102, 1995─2001; (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., J. Comput. Chem. 2003, 24, 669-681.
(32) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297─3305.
(33) Shriver, D. F.; Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
(34) Blessing, R. H., Acta Crystallogr., Sect. A 1995, 51, 33─38.
(35) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
(36) N. Belfguira, S. Walha, A. Kabadou, A. B. Salah, F. Hatert, A. M. Fransolet, J. Chem. Crystallogr. 2011, 41, 370─374.
(37) (a) Becke, A. D., J. Chem. Phys. 1992, 96, 2155-2160; (b) Becke, A. D., J. Chem. Phys. 1992, 97, 9173-9177; (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648─5652.
(38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
(39) (a) Gorelsky, S. I.; Lever, A. B. P., J. Organomet. Chem. 2001, 635, 187-196; (b) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.
(40) 由國立臺灣師範大學,林建男未發表之博士論文。
3.7 參考文獻
(1) (a) Fenske, D. ; Ohmer, J. ; Hachgenei, J.; Merzweiler, K. Angew. Chem. In,. Ed. Engl. 1988, 27, 1277─1296. (b) Krebs, B ; Henkel, G. Angew. Chem. In,. Ed. Engl. 1991, 30, 769─788. (c) Roof, L.C.;Kolis, J. W. Chem. Rev. 1993, 93, 1037─1080. (d) Herrmann, W.A. Angew. Chem. In,. Ed. Engl. 1986, 25, 47─56. (e) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95─204.
(2) (a) Somorjai, G. A. Chemistry in Two Dimension; Cornell University Press: New York, 1981. (b) Lin, Y. C.;Lu, K. H. Chemistry 1991, 49, 303. (c) Douglas, B.; Mcdaniel, D; Alexander, J. Concepts and Models of Inorganic Chemistry 3rd Wiley, 1994.
(3) (a) Whitmire, K. H. Lagrone, C. B.; Rheingold, A. L. J. Inorg. Chem. 1986, 25, 2470─2472. (b) Hlavinka, H. L.; Miyaji, T; Staples, R. J.; Holm, R. H. Inorg. Chem. 2004, 46, 9192─9200. (c) Scott,T. A.; Holm, R. H. Inorg. Chem. 2008, 476, 3426─3432.
(4) (a) Cotton, F. A.; Wilkinson, G. Ad V anced Inorganic Chemistry, 5th ed.; John Wiley and Sons: New York, 1988; p 1053. (b) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH: New York, 1990. (c) Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 1 - 3. (d) Hwu, S.-J.; Corbett, J. D. J. Solid State Chem. 1986, 64, 331. (e) Harakas, G. N.; Whittlesey, B. R. J. Am. Chem. Soc. 1996, 118, 4210.
(5) Shieh, M.; Chung, R.-L.; Yu, C.-H.; Hsu, M.-H.; Peng S.-M. Inorg. Chem. 2003, 42, 5477.
(6) 鍾瑞霖,國立臺灣師範大學碩士畢業論文,2000年。
(7) Shriver, D. F.; Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds. Wiley: 1986.
(8) Blessing, R. H., Acta Crystallogr., Sect. A 1995, 51, 33─38.
(9) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
(10) (a) Becke, A. D., J. Chem. Phys. 1992, 96, 2155-2160; (b) Becke, A. D., J. Chem. Phys. 1992, 97, 9173-9177; (c) Becke, A. D., J. Chem. Phys. 1993, 98, 5648─5652.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
(12) Becke, A. D., Phys. Rev. A 1988, 38, 3098-3100.
(13) Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200-1211
(14) Perdew, J. P., Phys. Rev. B 1986, 33, 8822-8824.
(15) (a) Barone, V.; Cossi, M., J. Phys. Chem. A 1998, 102, 1995─2001; (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., J. Comput. Chem. 2003, 24, 669-681.
(16) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664 .
(17) 由國立臺灣師範大學,邢凱捷未發表之博士論文。