研究生: |
呂坤樺 Lu, Kun-Hua |
---|---|
論文名稱: |
以c-AMP解除碳源代謝抑制於檢測不同基質中的苯乙酸及苯乙胺 Using c-AMP to Release the Carbon Catabolite Repression in Different Types of Matrices for the Determination of Phenylacetic Acid and Phenylethylamine |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 全細胞生物感測器 、苯乙胺 、苯乙酸 、碳源代謝抑制效應 、解抑制模擬 、環腺苷酸 、尿液樣品 |
英文關鍵詞: | Whole cell-based biosensor, Phenethylamine, Phenylacetic acid, Carbon catabolite repression, The simulation of release, Cyclic adenosine monophosphate, Urine sample |
DOI URL: | http://doi.org/10.6345/NTNU201900504 |
論文種類: | 學術論文 |
相關次數: | 點閱:212 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
苯乙胺及苯乙酸分別為人體中重要的神經傳導物質以及代謝產物,其中尿液中的苯乙酸為偵測苯丙酮尿症患者的重要指標。然而尿液樣品所產生的基質干擾,抑制了細胞中環腺苷酸-CRP 轉錄結合位點系統,造成全細胞生物感測器的偵測異常。在此,先在標準培養液中模擬出碳源代謝抑制效應,並透過額外添加環腺苷酸、2-脫氧葡萄糖及更換培養液氮源的方式解除其效應,再將此優化的解抑制條件運用在尿液樣品中,達到更廣的檢測應用。
Phenylethylamine and phenylacetic acid are important metabolites in the human body. Specifcally, urinary phenylacetic acid is a vital indicator for the diagnosis of phenylketonuria. However, the matrix effect generated by the urinary glucose represses the cyclic adenosine monophosphate-CRP transcriptional binding in the cell. In this study, the carbon catabolite repression is first simulated in the standard culture media, and it is released by adding cyclic adenosine monophosphate, 2-Deoxy-D glucose, and replacing nitrogen sources of the culture media. Finally, the optimization of released conditions is applied to the urine samples to achieve a better detection application.
1.Turner, A.; Karube, I.; Wilson, G. S., Biosensors: fundamentals and applications. Oxford university press: 1987.
2.Scheller, F.; Hintsche, R.; Pfeiffer, D.; Schubert, F.; Riedel, K.; Kindervater, R., Biosensors: fundamentals, applications and trends. Sensors and Actuators B: Chemical. 1991, 4 (1-2), 197-206.
3.Lowe, C. R., Biosensors. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1989, 324 (1224), 487-496.
4.Luong, J.; Mulchandani, A.; Guilbault, G. G., Developments and applications of biosensors. Trends in Biotechnology. 1988, 6 (12), 310-316.
5.Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M., Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors. 2015, 15 (12), 30011-30031.
6.Wang, J., Electrochemical glucose biosensors. Chemical reviews. 2008, 108 (2), 814-825.
7.Schultz, J. S., Biosensors. Scientific American. 1991, 265 (2), 64-69.
8.Updike, S.; Hicks, G. P., The enzyme electrode. Nature. 1967, 214 (5092), 986.
9.Eggins, B. R., Chemical sensors and biosensors. John Wiley & Sons. 2008
10.Wang, J., Glucose biosensors: 40 years of advances and challenges. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2001, 13 (12), 983-988.
11.Stoica, L.; Ludwig, R.; Haltrich, D.; Gorton, L., Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. Analytical chemistry. 2006, 78 (2), 393-398.
12.Stone, H. A.; Stroock, A. D.; Ajdari, A., Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36, 381-411.
13.da Silva, J. C. E.; Gonçalves, H. M., Analytical and bioanalytical applications of carbon dots. TrAC Trends in analytical chemistry. 2011, 30 (8), 1327-1336.
14.Yayon, A.; Klagsbrun, M.; Esko, J. D.; Leder, P.; Ornitz, D. M., Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991, 64 (4), 841-848.
15.Săndulescu, R.; Tertiş, M.; Cristea, C.; Bodoki, E., New materials for the construction of electrochemical biosensors. Biosensors-Micro and Nanoscale Applications. IntechOpen, 2015.
16.Prodromidis, M. I.; Karayannis, M. I., Enzyme based amperometric biosensors for food analysis. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2002, 14 (4), 241-261.
17.Dremel, B. A.; Schaffar, B. P.; Schmid, R. D., Determination of glucose in wine and fruit juice based on a fibre-optic glucose biosensor and flow-injection analysis. Analytica Chimica Acta. 1989, 225, 293-301.
18.Proll, G.; Tschmelak, J.; Gauglitz, G., Fully automated biosensors for water analysis. Analytical and bioanalytical chemistry. 2005, 381 (1), 61-63.
19.Mitchell, S.; Poulsson, A.; Davidson, M.; Emmison, N.; Shard, A.; Bradley, R. H., Cellular attachment and spatial control of cells using micro-patterned ultra-violet/ozone treatment in serum enriched media. Biomaterials. 2004, 25 (18), 4079-4086.
20.Haron, S.; Ray, A. K., Optical biodetection of cadmium and lead ions in water. Medical engineering & physics. 2006, 28 (10), 978-981.
21.Ziegler, C., Cell-based biosensors. Fresenius' journal of analytical chemistry. 2000, 366 (6-7), 552-559.
22.Pancrazio, J. J.; Whelan, J.; Borkholder, D. A., Development and application of cell-based biosensors. Annals of biomedical engineering. 1999, 27 (6), 697-711.
23.De Lorenzo, V.; Herrero, M.; Jakubzik, U.; Timmis, K. N., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. Journal of bacteriology. 1990, 172 (11), 6568-6572.
24.Prendergast, F. G.; Mann, K. G., Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea. Biochemistry. 1978, 17 (17), 3448-3453.
25.Tsien, R. Y., The green fluorescent protein. 1998.
26.Shimomura, O.; Johnson, F. H.; Saiga, Y., Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of cellular and comparative physiology. 1962, 59 (3), 223-239.
27.Contag, C. H.; Bachmann, M. H., Advances in in vivo bioluminescence imaging of gene expression. 2002, 4 (1), 235-260.
28.Fan, F.; Lewis, M. K.; Shultz, J. W.; Wood, K. V.; Butler, B., Luciferase biosensor. U.S. Patent No. 8,183,036. 2012.
29.Guo, K. H.; Chen, P. H.; Lin, C.; Chen, C. F.; Lee, I. R.; Yeh, Y. C., Determination of gold ions in human urine using genetically engineered microorganisms on a paper device. ACS sensors. 2018, 3 (4), 744-748.
30.Kylilis, N.; Riangrungroj, P.; Lai, H. E.; Salema, V.; Fernández, L. A. n.; Stan, G. B. V.; Freemont, P. S.; Polizzi, K. M., Whole-Cell Biosensor with Tunable Limit of Detection Enables Low-Cost Agglutination Assays for Medical Diagnostic Applications. ACS sensors. 2019, 4 (2), 370-378.
31.Guo, K. H.; Lu, K. H.; Yeh, Y. C., Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS synthetic biology. 2018, 7 (12), 2790-2795.
32.McFarland, D. C., Preparation of pure cell cultures by cloning. Methods in cell science. 2000, 22 (1), 63-66.
33.Green, M. R.; Sambrook, J., Molecular cloning. A Laboratory Manual 4th. 2012.
34.De Robertis, E. M., Spemann's organizer and self-regulation in amphibian embryos. Nature reviews Molecular cell biology. 2006, 7 (4), 296.
35.Lassen, J.; Gjerris, M.; Sandøe, P., After Dolly—Ethical limits to the use of biotechnology on farm animals. Theriogenology. 2006, 65 (5), 992-1004.
36.Jackson, D. A.; Symons, R. H.; Berg, P., Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proceedings of the National Academy of Sciences. 1972, 69 (10), 2904-2909.
37.Meyer, A.; Panke, S., Genomics in metabolic engineering and biocatalytic applications of the pollutant degradation machinery. Microbial Biodegradation: Genomics and Molecular Biology. 2008.
38.Nataro, J. P.; Kaper, J. B., Diarrheagenic escherichia coli. Clinical microbiology reviews. 1998, 11 (1), 142-201.
39.Dietzman, D. E.; Fischer, G. W.; Schoenknecht, F. D., Neonatal Escherichia coli septicemia—bacterial counts in blood. The Journal of pediatrics. 1974, 85 (1), 128-130.
40.Levine, M. M., Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. The University of Chicago Press. 1987.
41.Goeddel, D. V.; Kleid, D. G.; Bolivar, F.; Heyneker, H. L.; Yansura, D. G.; Crea, R.; Hirose, T.; Kraszewski, A.; Itakura, K.; Riggs, A. D., Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences. 1979, 76 (1), 106-110.
42.Tabor, S.; Richardson, C. C., A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences. 1985, 82 (4), 1074-1078.
43.Casadaban, M. J., Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. Journal of molecular biology. 1976, 104 (3), 541-555.
44.Menart, V.; Jevševar, S.; Vilar, M.; Trobiš, A.; Pavko, A., Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR, PL promoters from phage lambda. Biotechnology and bioengineering. 2003, 83 (2), 181-190.
45.Tucker, D. L.; Tucker, N.; Conway, T., Gene expression profiling of the pH response in Escherichia coli. Journal of Bacteriology. 2002, 184 (23), 6551-6558.
46.Sinensky, M., Temperature control of phospholipid biosynthesis in Escherichia coli. Journal of bacteriology. 1971, 106 (2), 449-455.
47.El-Mansi, E.; Holms, W. H., Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. Microbiology. 1989, 135 (11), 2875-2883.
48.Pei, Y.; Asif-Malik, A.; Canales, J. J., Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Frontiers in neuroscience. 2016, 10, 148.
49.Burchett, S. A.; Hicks, T. P., The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Progress in neurobiology. 2006, 79 (5-6), 223-246.
50.Berry, M. D., The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Reviews on recent clinical trials. 2007, 2 (1), 3-19.
51.Nakamura, M.; Ishii, A.; Nakahara, D., Characterization of β-phenylethylamine-induced monoamine release in rat nucleus accumbens: a microdialysis study. European journal of pharmacology. 1998, 349 (2-3), 163-169.
52.Irsfeld, M.; Spadafore, M.; Prüß, B. M., β-phenylethylamine, a small molecule with a large impact. Webmedcentral. 2013, 4 (9).
53.Potkin, S. G.; Karoum, F.; Chuang, L. W.; Cannon Spoor, H.; Phillips, I.; Wyatt, R. J., Phenylethylamine in paranoid chronic schizophrenia. Science. 1979, 206 (4417), 470-471.
54.Bruinsma, K.; Taren, D. L., Chocolate: food or drug? Journal of the American Dietetic Association. 1999, 99 (10), 1249-1256.
55.Vorce, S. P.; Sklerov, J. H., A general screening and confirmation approach to the analysis of designer tryptamines and phenethylamines in blood and urine using GC-EI-MS and HPLC-electrospray-MS. Journal of analytical toxicology. 2004, 28 (6), 407-410.
56.Corse, J. W.; Jones, R. G.; Soper, Q. F.; Whitehead, C. W.; Behrens, O. K., Biosynthesis of Penicillins. V. 1 Substituted Phenylacetic Acid Derivatives as Penicillin Precursors. Journal of the American Chemical Society. 1948, 70 (9), 2837-2843.
57.Adams, R.; Thal, A. F., Benzyl cyanide. Organic Syntheses. 1922, 9-9.
58.Janssen, P. A.; Leysen, J. E.; Megens, A. A.; Awouters, F. H., Does phenylethylamine act as an endogenous amphetamine in some patients? International Journal of Neuropsychopharmacology. 1999, 2 (3), 229-240.
59.Diamond, A.; Prevor, M. B.; Callender, G.; Druin, D. P., Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the society for research in child development. 1997, i-206.
60.Dierckx, S.; Van Puyvelde, S.; Venken, L.; Eberle, W.; Vanderleyden, J., Design and construction of a whole cell bacterial 4-hydroxyphenylacetic acid and 2-phenylacetic acid bioassay. Frontiers in bioengineering and biotechnology. 2015, 3, 88.
61.Weng, J. R.; Tsai, C. H.; Kulp, S. K.; Chen, C. S., Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer letters. 2008, 262 (2), 153-163.
62.TANAKA, T., Cancer chemoprevention by natural-products. Oncology reports. 1994, 1 (6), 1139-1155.
63.Murray, R. D. H.; Méndez, J.; Brown, S. A., The natural coumarins. 1982.
64.Lacy, A.; O'kennedy, R., Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Current pharmaceutical design. 2004, 10 (30), 3797-3811.
65.Dı́az, E.; Ferrández, A.; Prieto, M. a. A.; Garcı́a, J. L., Biodegradation of aromatic compounds byEscherichia coli. Microbiol. Mol. Biol. Rev. 2001, 65 (4), 523-569.
66.Yamashita, M.; Azakami, H.; Yokoro, N.; Roh, J.-H.; Suzuki, H.; Kumagai, H.; Murooka, Y., maoB, a gene that encodes a positive regulator of the monoamine oxidase gene (maoA) in Escherichia coli. Journal of bacteriology. 1996, 178 (10), 2941-2947.
67.Zeng, J.; Spiro, S., Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. Journal of bacteriology. 2013, 195 (22), 5141-5150.
68.Hanlon, S. P.; Hill, T. K.; Flavell, M. A.; Stringfellow, J. M.; Cooper, R. A., 2-Phenylethylamine catabolism by Escherichia coli K-12: gene organization and expression. Microbiology. 1997, 143 (2), 513-518.
69.Steinebach, V.; Benen, J. A.; Bader, R.; Postma, P. W.; De Vries, S.; Duine, J. A., Cloning of the maoA gene that encodes aromatic amine oxidase of Escherichia coli W3350 and characterization of the overexpressed enzyme. European journal of biochemistry. 1996, 237 (3), 584-591.
70.Ferrández, A.; Prieto, M. a. A.; Garcı́a, J. L.; Dı́az, E., Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli. FEBS letters. 1997, 406 (1-2), 23-27.
71.Parrott, S.; Jones, S.; Cooper, R. A., 2-Phenylethylamine catabolism by Escherichia coli K12. Microbiology. 1987, 133 (2), 347-351.
72.Cooper, R.; Knowles, P.; Brown, D.; McGuirl, M.; Dooley, D.M., Evidence for copper and 3, 4, 6-trihydroxyphenylalanine quinone cofactors in an amine oxidase from the Gram-negative bacterium Escherichia coli K-12. Biochemical Journal. 1992, 288 (2), 337-340.
73.Yang, H.; Wolff, E.; Kim, M.; Diep, A.; Miller, J. H., Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Molecular microbiology. 2004, 53 (1), 283-295.
74.Kim, H. S.; Kang, T. S.; Hyun, J. S.; Kang, H. S., Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP-cAMP receptor protein complex. Journal of Biological Chemistry. 2004, 279 (32), 33253-33262.
75.Ferrández, A.; Garcı́a, J. L.; Dı́az, E., Transcriptional Regulation of the Divergent paaCatabolic Operons for Phenylacetic Acid Degradation inEscherichia coli. Journal of Biological Chemistry. 2000, 275 (16), 12214-12222.
76.Teufel, R.; Friedrich, T.; Fuchs, G., An oxygenase that forms and deoxygenates toxic epoxide. Nature. 2012, 483 (7389), 359.
77.Ferrández, A.; Miñambres, B.; Garcı́a, B.; Olivera, E. a. R.; Luengo, J. M.; Garcı́a, J. L.; Dı́az, E., Catabolism of phenylacetic acid in Escherichia coli characterization of a new aerobic hybrid pathway. Journal of Biological Chemistry. 1998, 273 (40), 25974-25986.
78.Al Hafid, N.; Christodoulou, J., Phenylketonuria: a review of current and future treatments. Translational pediatrics. 2015, 4 (4), 304.
79.National Institutes of Health Consensus Development Panel, National institutes of health consensus development conference statement: phenylketonuria: screening and management. Pediatrics. 2001, 108 (4), 972-982.
80.Grainger, D. C.; Busby, S. J., Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study. Adv Appl Microbiol. 2008, 65, 93-113.
81.Cooper, G. M.; Hausman, R. E.; Hausman, R. E., The cell: a molecular approach. ASM press Washington. DC, 2000; Vol. 10.
82.Hanamura, A.; Aiba, H., A new aspect of transcriptional control of the Escherichia coli crp gene: positive autoregulation. Molecular microbiology. 1992, 6 (17), 2489-2497.
83.Ramseier, T. M.; Saier Jr, M. H., cAMP-cAMP receptor protein complex: five binding sites in the control region of the Escherichia coli mannitol operon. Microbiology. 1995, 141 (8), 1901-1907.
84.Hanamura, A.; Aiba, H., Molecular mechanism of negative autoregulation of Escherichia coli crp gene. Nucleic acids research. 1991, 19 (16), 4413-4419.
85.Görke, B.; Stülke, J., Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Reviews Microbiology. 2008, 6 (8), 613.
86.Salmon, K.; Hung, S. p.; Mekjian, K.; Baldi, P.; Hatfield, G. W.; Gunsalus, R. P., Global gene expression profiling in Escherichia coli K12 the effects of oxygen availability and FNR. Journal of Biological Chemistry. 2003, 278 (32), 29837-29855.
87.Kang, Y.; Weber, K. D.; Qiu, Y.; Kiley, P. J.; Blattner, F. R., Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. Journal of Bacteriology. 2005, 187 (3), 1135-1160.
88.Martin, D. B.; Vagelos, P. R., The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem. 1962, 237 (6), 1787-92.
89.Stülke, J.; Hillen, W. J., Carbon catabolite repression in bacteria. Nature Reviews Microbiology. 1999, 2 (2), 195-201.
90.Postma, P.; Lengeler, J. W., Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiological reviews. 1985, 49 (3), 232.
91.Meadow, N. D.; Fox, D. K.; Roseman, S., The bacterial phosphoenol-pyruvate: glycose phosphotransferase system. Annual review of biochemistry. 1990, 59 (1), 497-542.
92.Johnston, M.; Carlson, M., 5 regulation of carbon and phosphate utilization. Cold Spring Harbor Monograph Archive. 1992, 21, 193-281.
93.Cameron, A. D.; Redfield, R. J., CRP binding and transcription activation at CRP-S sites. Journal of molecular biology. 2008, 383 (2), 313-323.
94.Busby, S.; Ebright, R. H., Transcription activation by catabolite activator protein (CAP). Journal of molecular biology. 1999, 293 (2), 199-213.
95.Lin, Y. K.; Yeh, Y. C., Dual-Signal Microbial Biosensor for the Detection of Dopamine without Inference from Other Catecholamine Neurotransmitters. Analytical chemistry. 2017, 89 (21), 11178-11182.
96.Bren, A.; Park, J. O.; Towbin, B. D.; Dekel, E.; Rabinowitz, J. D.; Alon, U., Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Scientific reports. 2016, 6, 24834.
97.Mönch, E.; Kneer, J.; Jakobs, C.; Arnold, M.; Diehl, H.; Batzler, U., Examination of urine metabolites in the newborn period and during protein loading tests at 6 months of age—part 1. European journal of pediatrics. 1990, 149 (1), 17-24.
98.Kusaga, A.; Yamashita, Y.; Koeda, T.; Hiratani, M.; Kaneko, M.; Yamada, S.; Matsuishi, T., Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Annals of neurology. 2002, 52 (3), 372-374.
99.Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.; Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P., The human urine metabolome. PloS one. 2013, 8 (9), e73076.
100.Gronwald, W.; Klein, M. S.; Zeltner, R.; Schulze, B. D.; Reinhold, S. W.; Deutschmann, M.; Immervoll, A. K.; Böger, C. A.; Banas, B.; Eckardt, K. U., Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine. Kidney international. 2011, 79 (11), 1244-1253.
101.Cucchi, M. L.; Frattini, P.; Santagostino, G.; Preda, S.; Orecchia, G., Catecholamines increase in the urine of non‐segmental vitiligo especially during its active phase. Pigment cell research. 2003, 16 (2), 111-116.
102.Nikolelis, D. P.; Drivelos, D. A.; Simantiraki, M. G.; Koinis, S., An optical spot test for the detection of dopamine in human urine using stabilized in air lipid films. Analytical chemistry. 2004, 76 (8), 2174-2180.