簡易檢索 / 詳目顯示

研究生: 胡韋成
Hu, Wei-Cheng
論文名稱: 多維圓錐上的平均數不等式
Some Inequalities of Means on Circular Cones
指導教授: 陳界山
Chen, Jein-Shan
口試委員: 陳界山
Chen, Jein-Shan
張毓麟
Chang, Yu-Lin
杜威仕
Du, Wei-Shih
口試日期: 2024/06/27
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 28
中文關鍵詞: 二階錐多維圓錐不等式調和平均數算術平均數
英文關鍵詞: SOC, circular cone, harmonic means, arithmetic means, inequalities
DOI URL: http://doi.org/10.6345/NTNU202400740
論文種類: 學術論文
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文的主題涉及將二階錐(second order cone, SOC)上的相關定理延伸至多維圓錐(circular cone)上的類似定理。在二階錐 (SOC) 中,算術平均數、調和平均數與最大最小值有對應的大小關係,並可以形成一個不等式,本文中會將此不等式推廣至多維圓錐中,找出類似的大小關係,而在討論多維圓錐時,本文會將其分為兩個部分,即 𝜃 ∈ (0,π/4) 和 𝜃 ∈ (π/4,π/2),進行各平均數不等式的討論,若與原不等式不相同則嘗試找出反例亦或是乘上特定的矩陣使其成立,並討論兩者之間的不同及相似之處。

    The theme of this thesis involves extending some inequalities associated with second order cones (SOC) to the setting associated with circular cones.
    Within SOC setting, there exists a relationship among the arithmetic mean, harmonic mean, maximum values and minimum values, which can be formulated into an inequality. This thesis aims to generalize this inequality to circular cones, identifying similar relationships. When discussing circular cones, the thesis will divide them into two parts: 𝜃 ∈ (0,π/4) and 𝜃 ∈ (π/4,π/2), for the discussion of various mean inequalities. If the results differ from the original inequalities, attempts will be made to find counterexamples or multiply with specific matrices to establish its validity, followed by discussions on the differences and similarities between the two cases.

    Acknowledgement i Chinese Abstract ii English Abstract iii Contents iv 1 Introduction and Motivation 1 2 Preliminary 4 3 Main Results 9 3.1 Extension of x ∨ y ≽_(К^n ) A(x, y) ≽_(К^n ) x ∧ y 9 3.2 Extension of x ∨ y ≽_(К^n ) H(x, y) ≽_(К^n ) x ∧ y 12 3.3 Relation with A(x, y) and H(x, y) 15 4 Conclusion 26 References 28

    J. S. Chen. SOC Functions and Their Applications. Springer, 2019.
    J. S. Chen, H. F. Hung, and J. C. Zhou. Circular cone convexity and some inequalities
    associated with circular cones. Journal of Inequalities and Applications, vol. 2013, Article ID 571, 17 pages, 2013.
    J. S. Chen and J. C. Zhou. Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal 14 pp. 807-816, 2013.
    J. S. Chen and J. S. Zhou. Monotonicity and circular cone monotonicity associated with circular cones. Set-Valued and Variational Analtsis, vol.25, no.2, pp. 211-232, 2017.
    Z. Hao, C. T. Nguyen, and J. S. Chen. An approximate lower order penalty approach for solving second-order cone linear complementarity problems. Journal of Global Optimization, vol. 83, no. 4, pp. 671-697, 2022.
    C. H. Huang, Y. L. Chang, and J. S. Chen. Some inequalities on weighted means and traces defined on second-order cone. Linear and Nonlinear Analysis, vol. 5, no. 2, pp. 221-236, 2019.
    X. H. Miao, W. M. Hsu, C. T. Nguyen, and J. S. Chen. The solvabilities of three opti-mization problems associated with second-order cone. Journal of Nonlinear and Convex Analysis, vol. 22, no. 5, pp. 937-967, 2021.
    X. H. Miao, K. Yao, C. Y. Yang, and J. S. Chen. Levenberg-marquardt method for absolute value equation associated with second-order cone. Numerical Algebra, Control and Optimization, vol. 12, no. 1, pp. 47-61, 2022.

    下載圖示
    QR CODE