研究生: |
楊玉珠 Yang, Yu-Chu |
---|---|
論文名稱: |
一價銠金屬催化α-酮酯進行具鏡像選擇性的烯丙基化反應:合成4’-芳基-2’,3’-二去氧核苷類似物 Rhodium(I)-Catalyzed Enantioselective Allylation of α-Ketoesters: Synthesis of 4’-Aryl-2’,3’-dideoxynucleoside Analogue |
指導教授: |
吳學亮
Wu, Hsyueh-Liang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 216 |
中文關鍵詞: | 一價銠金屬催化 、掌性雙環[2.2.1]雙烯配基 、烯丙基硼酸頻哪醇酯試劑 、α-酮酯 、掌性三級高烯丙醇 、鏡像選擇性 、不對稱加成反應 、核苷類似物 |
英文關鍵詞: | Rhodium(I)-catalyzed, bicyclo[2.2.1]diene ligands, allyl boronic acid pinacol esters, α-ketoesters, chiral homoallylic alcohols, enantioselectivity, asymmetric addition, nucleoside analogue |
DOI URL: | http://doi.org/10.6345/NTNU202001142 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文敘述利用一價銠金屬及掌性雙環[2.2.1]雙烯配基L8k配位形成之催化劑催化不同的烯丙基硼酸頻哪醇酯試劑14對α-酮酯7進行不對稱1,2-加成反應,以最優化條件進行反應,成功合成出一系列的掌性三級高烯丙醇2和71,產率高達>99%,鏡像超越值高達98%,非鏡像異構物比例高達>20:1。
此外,以加成產物2qa經5個步驟可得到掌性內酯ent-88,總產率為85%,再利用已知的方法能夠合成出具有抗HIV及抗癌活性的核苷類似物。
This thesis describes an asymmetric 1,2-addition of allyl boronic acid pinacol esters 14 to α-ketoesters 7, catalyzed by a chiral Rh(I)-catalyst, which in situ generated from [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1] heptadiene ligand L8k. Under optimal reaction conditions, the desired chiral tertiary homoallylic alcohols 2 and 71 were generated in up to >99% yield with up to 98% ee and up to >20:1 diastereomeric ratio.
In addition, the homoallylic alcohol 2qa was converted, in 5 steps with 85% overall yields, to lactone ent-88 that is the crucial precursor for anti-HIV and anti-cancer nucleoside analogues.
1. (a) Franks, M. E.; Macpherson, G. R.; Figg, W. D. Lancet 2004, 363, 1802–1811. (b) Moghe, V. V.; Kulkarni, U.; Parmar, U. I. Bombay Hospital Journal 2008, 50, 472–476. (c) Kelsey, F. O. J. Dent. Res. 1967, 46, 1199–1205.
2. (a) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2794. (b) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774–7854. (c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595–5698.
3. Cravotto, G.; Giovenzana, G. B.; Palmisano, G.; Penoni, A.; Pilati, T.; Sisti, M.; Stazi, F. Tetrahedron: Asymmetry 2006, 17, 3070–3074.
4. Huang, J.-M.; Xu, K.-C.; Loh, T.-P. Synthesis 2003, 5, 755–764.
5. Singh, P.; Mittal, A.; Bhardwaj, A.; Kaur, S.; Kumar, S. Bioorg. Med. Chem. Lett. 2008, 18, 85–89.
6. (a) Jõgi, A.; Paju, A.; Pehk, T.; Kailas, T.; Müürisepp, A.-M.; Lopp, M. Tetrahedron 2009, 65, 2959–2965. (b) Robbins, D. W.; Lee, K.; Silverio, D. L.; Volkov, A.; Torker, S.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 9610–9614.
7. Ojima, I.; Miyazawa, Y.; Kumagai, M. J. Chem. Soc., Chem. Commun. 1976, 22, 927–928.
8. Soai, K.; Ishizaki, M. J. Chem. Soc., Chem. Commun. 1984, 15, 1016–1017.
9. Kulkarni, N. A.; Wang, S.-G.; Lee, L.-C.; Tsai, H. R.; Venkatesham, U.; Chen, K. Tetrahedron: Asymmetry 2006, 17, 336–346.
10. Zheng, K.; Qin, B.; Liu, X.; Feng, X. J. Org. Chem. 2007, 72, 8478–8483.
11. Cui, Y.; Li, W.; Sato, T.; Yamashita, Y.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 1193–1205.
12. Niwa, Y.; Miyake, M.; Hayakawa, I.; Sakakura, A. Chem. Commun. 2019, 55, 3923–3926.
13. Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2008, 47, 4351–4353.
14. Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066–18069.
15. Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem. Int. Ed. 2012, 51, 780–783.
16. Khiar, N.; Valdivia, V.; Salvador, Á.; Chelouan, A.; Alcudia, A.; Fernández, I. Adv. Synth. Catal. 2013, 355, 1303–1307.
17. Melcher, M.-C.; Ivšić, T.; Olagnon, C.; Tenten, C.; Lützen, A.; Strand, D. Chem. Eur. J. 2018, 24, 2344–2348.
18. Chang, C.-A.; Uang, T.-Y.; Jian, J.-H.; Zhou, M.-Y.; Chen, M.-L.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Adv. Synth. Catal. 2018, 360, 3381–3390.
19. Luo, Y.; Hepburn, H. B.; Chotsaeng, N.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 8309–8313.
20. Chiang, P.-F.; Li, W.-S.; Jian, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Org. Lett. 2018, 20, 158–161.
21. Li, W.-S.; Kuo, T.-S.; Hsieh, M.-C.; Tsai, M.-K.; Wu, P.-Y.; Wu, H.-L. Org. Lett. 2020, 22, 5675–5679.
22. 李家瑋(2017)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
23. 李治毅(2017)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
24. 蔡傜竹(2018)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
25. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508–11509.
26. Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503–2508.
27. Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765–4773.
28. (a) Holtz, H. D.; Stock, L. M. J. Am. Chem. Soc. 1964, 86, 5183–5188. (b) Luo, Y.; Carnell, A. J. Angew. Chem. Int. Ed. 2010, 49, 2750–2754.
29. (a) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337. (b) Zhong, Y.-W.; Lei, X.-S.; Lin, G.-Q. Tetrahedron: Asymmetry 2002, 13, 2251–2255.
30. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
31. Barker, T. J.; Jarvo, E. R. Org. Lett. 2009, 11, 1047–1049.
32. (a) Boyer, P. L.; Julias, J. G.; Ambrose, Z.; Siddiqui, M. A.; Marquez, V. E.; Hughes, S. H. J. Mol. Biol. 2007, 371, 873–882. (b) Tanaka, H.; Haraguchi, K.; Kumamoto, H.; Baba, M.; Cheng, Y.-C. Antivir. Chem. Chemother. 2005, 16, 217–221. (c) Summerer, D.; Marx, A. Bioorg. Med. Chem. Lett. 2005, 15, 869–871.
33. (a) Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Bioorg. Med. Chem. Lett. 1999, 9, 385–388. (b) Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C. Bioorg. Med. Chem. Lett. 2003, 13, 3775–3777. (c) Maag, H.; Rydzewski, R. M.; McRoberts, M. J.; Crawford-Ruth, D.; Verheyden, J. P. H.; Prisbe, E. J. J. Med. Chem. 1992, 35, 1440–1451.
34. Jõgi, A.; Paju, A.; Pehk, T.; Kailas, T.; Müürisepp, A.-M.; Kanger, T.; Lopp, M. Synthesis 2006, 18, 3031–3036.
35. (a) Tian, D.; Li, C.; Gu, G.; Peng, H.; Zhang, X.; Tang, W. Angew. Chem. Int. Ed. 2018, 57, 7176–7180. (b) Shirai, T.; Ito, H.; Yamamoto, Y. Angew. Chem. Int. Ed. 2014, 53, 2658–2661.
36. Zhang, J.; Liu, X.; Ma, X.; Wang, R. Chem. Commun. 2013, 49, 3300–3302.
37. Meng, Q.; Sun, Y.; Ratovelomanana-Vidal, V.; Genêt, J. P.; Zhang, Z. J. Org. Chem. 2008, 73, 3842–3847.
38. Allais, C.; Constantieux, T.; Rodriguez, J. Synthesis 2009, 15, 2523–2530.
39. Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2014, 16, 776–779.
40. (a) Iranpoor, N.; Firouzabadi, H.; Aghapour, G.; Vaez zadeh, A. R. Tetrahedron 2002, 58, 8689–8693. (b) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036–4037.
41. Grayson, M. N.; Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716–2722.
42. (a) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc. 2009, 131, 16346–16347. (b) Niyomchon, S.; Audisio, D.; Luparia, M.; Maulide, N. Org. Lett. 2013, 15, 2318–2321.
43. Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 8770–8773.
44. (a) Kumar, Y.; Jaiswal, Y.; Kumar, A. J. Org. Chem. 2016, 81, 12247–12257. (b) Khan, S.; Ahmed, Q. N. Eur. J. Org. Chem. 2016, 5377–5385. (c) Xu, X.; Ding, W.; Lin, Y.; Song, Q. Org. Lett. 2015, 17, 516–519. (d) Foley, C.; Shaw, A.; Hulme, C. Org. Lett. 2017, 19, 2238–2241. (e) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152–1155. (f) Zhang, F.-H.; Wang, C.; Xie, J.-H.; Zhou, Q.-L. Adv. Synth. Catal. 2019, 361, 2832–2835. (g) Enders, D.; Rembiak, A.; Stöckel, B. A. Adv. Synth. Catal. 2013, 355, 1937–1942. (h) Albrecht, Ł.; Dickmeiss, G.; Weise, C. F.; Rodríguez-Escrich, C.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2012, 51, 13109–13113.
45. (a) Selander, N.; Szabó, K. J. J. Org. Chem. 2009, 74, 5695–5698. (b) Clary, J. W.; Rettenmaier, T. J.; Snelling, R.; Bryks, W.; Banwell, J.; Wipke, W. T.; Singaram, B. J. Org. Chem. 2011, 76, 9602–9610. (c) Mao, L.; Szabó, K. J.; Marder, T. B. Org. Lett. 2017, 19, 1204–1207.