研究生: |
林宸宇 Lin, Chen-Yu |
---|---|
論文名稱: |
水溶性碳量子點的合成及其應用 The characterizations and applications of water-soluble carbon quantum dots |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 碳量子點 、生物相容性 、細胞標記 、Pb5 、FhuA 、細胞裂解 |
英文關鍵詞: | carbon quantum dots, biocompatibility, bioimaging, Pb5, FhuA, cell lysis |
DOI URL: | https://doi.org/10.6345/NTNU202202358 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳量子點是一種新型的零維奈米材料,由於普遍具有良好的螢光特性和生物相容性,在生物顯像的領域受到廣泛的應用。本研究我們以檸檬酸和三乙烯四胺為前驅物,並利用微波法合成氮摻雜碳量子點。在應用方面,第一,不同的酸鹼環境影響下,其螢光強度隨著pH值有良好的線性關係;第二,針對不同的金屬離子溶液,發現對六價鉻離子有明顯的專一性螢光消逝;第三,我們也透過碳量子點做大腸桿菌的細胞標記,發現有良好的螢光強度和生物相容性。我們利用大腸桿菌BL21將Pb5蛋白大量表現純化後以螢光基團修飾,藉由噬菌體Pb5蛋白和大腸桿菌外膜蛋白的結合特性,作為標記大腸桿菌的方式,也發現對於大量表現FhuA外膜蛋白的大腸桿菌可作為良好的專一性螢光探針。再者,我們能以螢光訊號的強度來呈現不同細菌量對於修飾過的Pb5蛋白結合情況,發現有良好的線性關係。最後,我們利用偵測在細胞裂解產物的上清液螢光訊號,定量細胞裂解的效率。
Carbon quantum dot is a type of zero-dimensional nanomaterials. These materials have been widely applied to bioimaging and sensor to their outstanding properties such as fluorescence and biocompatibility. In this study, water-soluble N-doped carbon quantum dots (CQDs) were synthesized by microwave-induced decomposition using citric acid and triethylenetetramine (TETA) as precursors. For the applications, firstly, the intensity of fluorescence showed linear relationship with pH values. Secondly, these CQDs were sensitive fluorescent probes for the detection of Cr6+ with significant fluorescence quenching. Thirdly, we found the excellent properties of cell imaging and biocompatibility on labeling E. coli with CQDs. We labeled the E. coli outer membrane with the strong interactions between the bacteriophage tail protein Pb5 which was modified with rhodamine and E. coli outer membrane protein ferric hydroxamate uptake A (FhuA). Besides, we could estimate the number of the cells based on the linear relationship between the fluorescence signals of modified Pb5 and the cells. Finally, the protein complexes, FhuA-Pb5-rhodamine, was used to estimate the efficiency of cell lysis.
[1] Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). Journal of the American Chemical Society, 2007, 129, 744-745.
[2] Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. American Chemical Society Nano, 2009, 3, 2367-2375.
[3] Tan, D.; Yamada, Y.; Zhou, S.; Shimotsuma, Y.; Miura, K.; Qiu, J. Carbon nanodots with strong nonlinear optical response. Carbon, 2014, 69, 638-640.
[4] Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 2009, 19, 484-488.
[5] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent Carbogenic Dots. Chemistry of Materials, 2008, 20, 4539-4541.
[6] Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angewandte Chemie, 2009, 121, 4668-4671.
[7] Liu, Y.; Xiao, N.; Gong, N.; Wang, H.; Shi, X.; Gu, W.; Ye, L. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon, 2014, 68, 258-264.
[8] Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications, 2009, 5118-5120.
[9] Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S.-T.; Kang, Z. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.
[10] Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New Journal of Chemistry, 2012, 36, 861-864.
[11] Liu, H.; Ye, T.; Mao, C. Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angewandte Chemie International Edition, 2007, 46, 6473-6475.
[12] Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y.; Huang, T.; Hong, X.; You, S.; Lin, Y.; Zeng, K.; Chen, S. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale, 2013, 5, 1967-1971.
[13] Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A. Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chemistry of Materials, 2014, 26, 3104-3112.
[14] Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk - natural proteins. Journal of Materials Chemistry B, 2013, 1, 2868-2873.
[15] Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie, 2013, 125, 4045-4049.
[16] Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P. Carbon Dots for Optical Imaging in Vivo. Journal of the American Chemical Society, 2009, 131, 11308-11309.
[17] Xu, Z.-Q.; Yang, L.-Y.; Fan, X.-Y.; Jin, J.-C.; Mei, J.; Peng, W.; Jiang, F.-L.; Xiao, Q.; Liu, Y. Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon, 2014, 66, 351-360.
[18] Liu, J.-M.; Lin, L.-p.; Wang, X.-X.; Jiao, L.; Cui, M.-L.; Jiang, S.-L.; Cai, W.-L.; Zhang, L.-H.; Zheng, Z.-Y. Zr(H2O)2EDTA modulated luminescent carbon dots as fluorescent probes for fluoride detection. Analyst, 2013, 138, 278-283.
[19] Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 2012, 41, 9526-9531.
[20] Zhang, X.; Wang, F.; Huang, H.; Li, H.; Han, X.; Liu, Y.; Kang, Z. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale, 2013, 5, 2274-2278.
[21] Samson, J. E.; Magadan, A. H.; Sabri, M.; Moineau, S. Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology, 2013, 11, 675-687.
[22] Kingwell, K. Bacteriophage therapies re-enter clinical trials. Nature Reviews Drug Discovery, 2015, 14, 515-516.
[23] Feiner, R.; Argov, T.; Rabinovich, L.; Sigal, N.; Borovok, I.; Herskovits, A. A. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nature Reviews Microbiology, 2015, 13, 641-650.
[24] Miethke, M.; Marahiel, M. A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiology and Molecular Biology Reviews, 2007, 71, 413-451.
[25] Böhm, J.; Lambert, O.; Frangakis, A. S.; Letellier, L.; Baumeister, W.; Rigaud, J. L. FhuA-mediated phage genome transfer into liposomes. Current Biology, 11, 1168-1175.
[26] Flayhan, A.; Wien, F.; Paternostre, M.; Boulanger, P.; Breyton, C. New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA. Biochimie, 2012, 94, 1982-1989.