簡易檢索 / 詳目顯示

研究生: 李飛
Lee, Fei
論文名稱: 透過光子輔助的流形採樣來實現加速焦散繪製
Accelerated Caustic Rendering with Photon-driven Manifold Sampling
指導教授: 張鈞法
Chang, Chun-Fa
口試委員: 賴祐吉
Lai, Yu-Chi
陳英傑
Chen, Ying-Chieh
陳履恆
Chen, Lieu-Hen
張鈞法
Chang, Chun-Fa
口試日期: 2023/06/20
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 41
中文關鍵詞: 全局照明焦散光線追蹤
英文關鍵詞: Rendering, Caustic, Ray Tracing
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202300811
論文種類: 學術論文
相關次數: 點閱:146下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 焦散、聚光的繪製一直是長期存在於光線傳輸模擬領域中的問題。這些複雜的照明效果是因為光線與具有接近Dirac Delta分布的雙向反射分佈函數(BRDF)之specular材料相互作用而產生。儘管光子映射類型的演算法可以有效地採樣這些困難的路徑,但代價是偏差。另一方面,許多無偏方法則是採用局部探索方法(如流形採樣)來解決此問題,這些方法利用specular表面的形成的流形性質來搜索其中可能的路徑,但需要時間讓其牛頓求解器進行迭代計算。
    在這篇論文中,我們提出了一種無偏的焦散採樣方法,稱為光子驅動的流形採樣 (Photon-driven Manifold Sampling)。與Specular Manifold Sampling類似,這種方法提供了一個從primary hit point通過流形採樣採樣焦散路徑的方法。但是與其使用隨機採樣specular interaction,我們使用鄰近區域中的光子路徑作為我們局部探索的初始猜測。這使我們能夠結合光子映射和流形採樣的優點,在相同時間內實現噪點減少和改善焦散採樣品質。

    Caustic rendering is a long-lasting challenge within the realm of light transport simulation, as light interacts with specular materials with near Dirac delta distribution as their Bidirectional Reflectance Distribution Function (BRDF), causing these complex lighting effects to manifest. Photon mapping is an efficient technique for sampling these challenging light paths, but introduces bias. Conversely, several unbiased methods address this problem by employing local exploration techniques such as Manifold sampling, which exploit the properties of specular surfaces to find admissible paths, but require time for their Newton solver to iterate.
    In this thesis, we introduce an unbiased method for sampling caustics called Photon-driven Manifold Sampling. Similar to Specular Manifold Sampling, this approach provides a means of sampling caustic paths from the primary hit point using manifold sampling. However, instead of stochastically sampling specular interactions, we use photon paths in the neighboring area as an initial guess for our local exploration. This enables us to combine the benefits of both photon mapping and manifold sampling, reducing noise and improving the quality of caustic sampling in the same amount of time.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 2 第二章 文獻探討 4 2.1 Global Illumination and Light Transport Simulation 4 2.1.1 Render Equation 4 2.1.2 Path Tracing 5 2.1.3 Photon Mapping 6 2.1.4 Metropolis Light Transport 8 2.2 Manifold Walk 9 第三章 研究議題與方法 15 3.1 Photon-driven Manifold Sampling 15 3.2 Photon Pass 16 3.2.1 使用 Photon 的原因 18 3.3 Eye Pass 19 3.3.1 Sampling Seed Path 20 3.3.1.1 Photon selection method 21 3.3.2 Manifold Walk 23 3.3.3 PDF Evaluation 25 3.3.3.1 Unbiased PMS 25 3.3.3.2 Biased PMS 26 3.4 Difference Between PMS and SMS 26 第四章 實驗結果與分析 28 4.1 程式實作與實驗環境 28 4.1.1 結果展示與數據比較 29 4.1.1.1 單個 Specular Vertex 29 4.1.1.2 多個 Specular Vertex 30 4.1.1.3 Normal Map 和 Displacement Map 31 4.1.1.4 Compare to SMBS 32 第五章 結論與未來展望 35 5.1 結論 35 5.2 未來展望 35 參考文獻 38

    A. C. Estevez and C. Kulla. Practical caustics rendering with adaptive photon guiding. In ACM SIGGRAPH 2020 Talks, SIGGRAPH ’20, New York, NY, USA, 2020. Association for Computing Machinery.
    I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek. Light transport simulation with vertex connection and merging. ACM Trans. Graph., 31(6), nov 2012.
    P. Grittmann, A. Pérard-Gayot, P. Slusallek, and J. Křivánek. Efficient caustic rendering with lightweight photon mapping. Computer Graphics Forum, 37(4):133–142, 2018.
    T. Hachisuka and H. W. Jensen. Stochastic progressive photon mapping. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, New York, NY, USA, 2009. Association for Computing Machinery.
    T. Hachisuka and H. W. Jensen. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph., 30(5), oct 2011.
    T. Hachisuka, S. Ogaki, and H. W. Jensen. Progressive photon mapping. ACM Trans. Graph., 27(5), dec 2008.
    T. Hachisuka, J. Pantaleoni, and H. W. Jensen. A path space extension for robust light transport simulation. ACM Trans. Graph., 31(6), nov 2012.
    J. Hanika, M. Droske, and L. Fascione. Manifold next event estimation. Comput. Graph. Forum, 34(4):87–97, jul 2015.
    B.-S. Hua, A. Gruson, D. Nowrouzezahrai, and T. Hachisuka. Gradient-domain photon density estimation. Comput. Graph. Forum, 36(2):31–38, may 2017.
    W. Jakob and S. Marschner. Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph., 31(4), jul 2012.
    W. A. Jakob. Light transport on path-space manifolds. Cornell University, 2013.
    H. W. Jensen. Global illumination using photon maps. In X. Pueyo and P. Schröder, editors, Rendering Techniques ’96, pages 21–30, Vienna, 1996. Springer Vienna.
    J.-W. Jhang and C.-F. Chang. Specular manifold bisection sampling for caustics rendering. Computer Graphics Forum, 41(7):247–254, 2022.
    J. T. Kajiya. The rendering equation. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, page 143–150, New York, NY, USA, 1986. Association for Computing Machinery.
    C. Kelemen, L. Szirmay-Kalos, G. Antal, and F. Csonka. A simple and robust mutation strategy for the metropolis light transport algorithm. Computer Graphics Forum, 21(3):531–540, 2002.
    M. Kettunen, M. Manzi, M. Aittala, J. Lehtinen, F. Durand, and M. Zwicker. Gradient-domain path tracing. ACM Trans. Graph., 34(4), jul 2015.
    E. P. Lafortune and Y. D. Willems. Bi-directional path tracing. 1993.
    J. Lehtinen, T. Karras, S. Laine, M. Aittala, F. Durand, and T. Aila. Gradient-domain metropolis light transport. ACM Trans. Graph., 32(4), jul 2013.
    H. Li, B. Wang, C. Tu, K. Xu, N. Holzschuch, and L.-Q. Yan. Unbiased caustics rendering guided by representative specular paths. In SIGGRAPH Asia 2022 Conference Papers, SA ’22, New York, NY, USA, 2022. Association for Computing Machinery.
    M. Manzi, M. Kettunen, M. Aittala, J. Lehtinen, F. Durand, and M. Zwicker. Gradient-Domain Bidirectional Path Tracing. In J. Lehtinen and D. Nowrouzezahrai, editors, Eurographics Symposium on Rendering - Experimental Ideas Implementations. The Eurographics Association, 2015.
    T. Müller, M. Gross, and J. Novák. Practical path guiding for efficient light-transport simulation. Comput. Graph. Forum, 36(4):91–100, jul 2017.
    M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. Mitsuba 2: A retargetable forward and inverse renderer. ACM Trans. Graph., 38(6), nov 2019.
    S. Speierer, C. Hery, R. Villemin, and W. J. Pixar. Caustic connection strategies for bidirectional path tracing. 2018.
    W. Sun, X. Sun, N. A. Carr, D. Nowrouzezahrai, and R. Ramamoorthi. Gradient Domain Vertex Connection and Merging. In M. Zwicker and P. Sander, editors, Eurographics Symposium on Rendering - Experimental Ideas Implementations. The Eurographics Association, 2017.
    E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford, CA, USA, 1998. AAI9837162.
    E. Veach and L. Guibas. Bidirectional estimators for light transport. In G. Sakas, S. Müller, and P. Shirley, editors, Photorealistic Rendering Techniques, pages 145–167, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.
    E. Veach and L. J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, page 419–428, New York, NY, USA, 1995. Association for Computing Machinery.
    E. Veach and L. J. Guibas. Metropolis light transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, page 65–76, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
    M. Šik, H. Otsu, T. Hachisuka, and J. Křivánek. Robust light transport simulation via metropolised bidirectional estimators. ACM Trans. Graph., 35(6), dec 2016.
    T. Zeltner, I. Georgiev, and W. Jakob. Specular manifold sampling for rendering high-frequency caustics and glints. ACM Trans. Graph., 39(4), aug 2020.

    下載圖示
    QR CODE