簡易檢索 / 詳目顯示

研究生: 沈文鈞
Shen, Wen-Chun
論文名稱: 以基於模糊多目標規劃之網路資料包絡 分析評估供應網路績效
Fuzzy Multi-Objective Programming Based Network Data Envelopment Analysis for Evaluation Perfor-mance of Supply Networks
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 99
中文關鍵詞: 網路資料包絡分析模糊多目標規劃供應網路鏈績效評估半導體
英文關鍵詞: Network Data Envelopment Analysis, Fuzzy Multiple Objective Decision Making, Supply Network, Performance Evaluation, Semiconductors
DOI URL: https://doi.org/10.6345/NTNU202202924
論文種類: 學術論文
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 供應鏈網路為公司之間的信息和技術如何在這些供應鏈之間流動。由於快速的技術進步,具有基本供應鏈的公司可以將其發展成更為複雜的結構。供應網路考慮了供應鏈中各個環節的環境問題,促進經濟與環境的協調發展。若只針對供應鏈上的單一組織做績效評估,無法針對不同的影響因子提供完整的分析結果。只以資料包絡法導入投入、產出值評估績效,無法分析供應鏈網路的績效。網路資料包絡分析法考慮組織或供應網路的結構,探討系統內部結構與內部流程之間的互動及影響以評估績效,可以分析無明確關聯的因子之間效率的方法,為近年來新興之方法,但因供應網路組成公司的投入、產出之資訊未必完整接露,因此,使用傳統網路資料包絡法評估績效,亦有其限制。為解決前述問題,本研究擬定義一個可分析不明確數值之模糊規劃,將可以(1)以供應鏈或供應網路整體的觀點來評估效率;(2)分析內部生產活動,並可以了解由於生產率降低,對產出造成的影響;(3)解決供應網路組成公司的投入、產出之資訊接露不完整的問題。本研究將以我國半導體業包含設計服務、晶圓代工、封裝、與測試之完整供應網路實證本研究之可行性,實證研究之結果,可作為改善績效之參考外,也可作為投資者評估投資標的或投資組合時的依據。

    The supply network refers to how information and technology flows be-tween companies across these supply chains. Due to rapid technological pro-gress, companies with basic supply chain can develop into more complex structures. Supply network considering the companies of each link in the sup-ply chain, focus on the coordinated development of economy. If the decision makers only evaluate the performance of a single organization in the supply chain, they cannot provide a complete analysis result for different factors. The data envelopment analysis is used to evaluate the performance of the input and output values. The performance of the whole supply chain network cannot be evaluated. The network data envelopment analysis method considers the structure of the organization or supply network, discusses the interaction and influence between the internal structure and the internal process of the system to evaluate the performance, and analyzes the efficiency among the unrelated factors. The input and output information of the supply network is not neces-sarily exposed. Therefore, the traditional network data envelopment analysis (DEA) method has some limitations. In order to solve the above problems, this study will define a fuzzy programming formula which can be used to analyze the uncertain values and provide; (1) to evaluate the efficiency of the supply chain or supply network as a whole; (2) analyze internal production activities and understand the impact on output as a result of reduced productivity; (3) to solve the supply network composed of input and output, the problem of in-complete information disclosing. This research will include the feasibility of design services, foundry, packaging, and testing the complete supply network the empirical study in Taiwan's semi-conductor industry. The results of empir-ical research can be used as a reference for improving the performance of the outside but also can be used as investors evaluate investment or portfolio basis.

    Table of Contents 摘要 i Abstract ii Table of Contents iv List of Table vi List of Figure vii Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Motivations 3 1.3 Research Purposes 5 1.4 Research Scope and Structure 6 1.5 Research Process 7 1.6 Research Limitations 8 1.7 Thesis Structure 9 Chapter 2 Literature review 11 2.1 Supply chain 11 2.2 Supply Network 18 2.3 Supply network performance evaluation 21 2.4 Supply network performance optimization 24 Chapter 3 Analytic Framework 27 3.1 Network DEA 27 3.2 Definition of model parameters 41 3.3 Multi-objective programming based Network data envelopment Analysis model 43 3.4 System Structure 47 Chapter 4 Empirical Study 49 Chapter 5 Discussion 81 5.1 Research Limitations and Future 83 5.2 Managerial Implication 84 Chapter 6 Conclusion 87 References 89

    Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140(2), 249-265.

    Agrawal, P., Broxterman, M., Chatterjee, B., Cuevas, P., Hayashi, K. H., Kahng, A. B., . . . Nath, S. (2017). Optimal Scheduling and Allocation for IC Design Management and Cost Reduction. ACM Transactions on Design Automation of Electronic Systems (TODAES), 22(4), 60.

    Alinezhad, A., Kakavand, H., Kazemi, A., & Javad, M. O. M. (2015). Developing a multi-objective BCC model in grey environment. International Journal of Modelling in Operations Management, 5(1), 72-82.

    Almeder, C., & Hartl, R. F. (2013). A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer. International Journal of Production Economics, 145(1), 88-95.

    Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 37(6), 4165-4176.

    Amindoust, A., Ahmed, S., Saghafinia, A., & Bahreininejad, A. (2012). Sustainable supplier selection: A ranking model based on fuzzy inference system. Applied Soft Computing, 12(6), 1668-1677.

    Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261-1264.
    Baker, R., & Talluri, S. (1997). A closer look at the use of data envelopment analysis for technology selection. Computers & Industrial Engineering, 32(1), 101-108.

    Boltic, Z., Ruzic, N., Jovanovic, M., Savic, M., Jovanovic, J., & Petrovic, S. (2013). Cleaner production aspects of tablet coating process in pharmaceutical industry: problem of VOCs emission. Journal of Cleaner Production, 44, 123-132.

    Bolton, P. (2008). The public procurement system in South Africa: main characteristics. Public Contract Law Journal, 781-802.

    Boukherroub, T., Ruiz, A., Guinet, A., & Fondrevelle, J. (2015). An integrated approach for sustainable supply chain planning. Computers & Operations Research, 54, 180-194.

    Chan, R. Y., He, H., Chan, H. K., & Wang, W. Y. (2012). Environmental orientation and corporate performance: The mediation mechanism of green supply chain management and moderating effect of competitive intensity. Industrial Marketing Management, 41(4), 621-630.

    Chang, C.-W., & Liao, C. C. (2013). Applying SWOT Analysis to Explore Taiwan Foundry Industry Management Strategy. International Journal of Innovation, Management and Technology, 4(1), 144.

    Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.

    Chen, C., & Yan, H. (2011). Network DEA model for supply chain performance evaluation. European Journal of Operational Research, 213(1), 147-155.
    Chen, Y., Simon, R., Reich-Weiser, C., & Woo, J. (2013). Green supply chain Green Manufacturing (pp. 83-105): Springer.

    Choi, S., Thalmayr, F., Wee, D., & Weig, F. (2016). Semiconductors in ADAS: Challenges & Opportunities. Auto Tech Review, 5(6), 20-25.

    Christopher, M. (1999). Logistics and Supply Chain Management: Strategies for Reducing Cost and Improving Service Financial Times: Pitman Publishing. London, 1998 ISBN 0 273 63049 0 (hardback) 294+ 1× pp.

    Christopher, M. (2016). Logistics & supply chain management: Pearson Higher Ed.

    Coskun, S., Ozgur, L., Polat, O., & Gungor, A. (2016). A model proposal for green supply chain network design based on consumer segmentation. Journal of Cleaner Production, 110, 149-157.

    Čuček, L., Martín, M., Grossmann, I. E., & Kravanja, Z. (2014). Multi-period synthesis of optimally integrated biomass and bioenergy supply network. Computers & Chemical Engineering, 66, 57-70.

    Dües, C. M., Tan, K. H., & Lim, M. (2013). Green as the new Lean: how to use Lean practices as a catalyst to greening your supply chain. Journal of Cleaner Production, 40, 93-100.

    Danese, P., & Romano, P. (2013). The moderating role of supply network structure on the customer integration-efficiency relationship. International Journal of Operations & Production Management, 33(4), 372-393.

    Danese, P., Romano, P., & Formentini, M. (2013). The impact of supply chain integration on responsiveness: The moderating effect of using an international supplier network. Transportation research part E: logistics and transportation review, 49(1), 125-140.

    de Sousa Jabbour, A. B. L., Jabbour, C. J. C., Latan, H., Teixeira, A. A., & de Oliveira, J. H. C. (2014). Quality management, environmental management maturity, green supply chain practices and green performance of Brazilian companies with ISO 14001 certification: Direct and indirect effects. Transportation research part E: logistics and transportation review, 67, 39-51.

    Diabat, A., Khodaverdi, R., & Olfat, L. (2013). An exploration of green supply chain practices and performances in an automotive industry. The International Journal of Advanced Manufacturing Technology, 68(1-4), 949-961.

    Ellram, L. M., & Cooper, M. C. (2014). Supply chain management: It's all about the journey, not the destination. Journal of Supply Chain Management, 50(1), 8-20.
    Etebari, F., Abedzadeh, M., & Khoshalhan, F. (2011). Investigating Impact of Intelligent Agents in Improving Supply Chain Performance. International Journal of Industrial Engineering, 22(1).

    Fahimnia, B., Sarkis, J., Boland, J., Reisi, M., & Goh, M. (2015). Policy insights from a green supply chain optimisation model. International Journal of Production Research, 53(21), 6522-6533.

    Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101-114.

    Farahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega, 45, 92-118.

    Fu, L. F., Meng, J., & Liu, Y. (2015). Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model. International Journal of Bifurcation and Chaos, 25(14), 1540036.

    Fukuyama, H., & Mirdehghan, S. (2012). Identifying the efficiency status in network DEA. European Journal of Operational Research, 220(1), 85-92.

    Galaskiewicz, J. (2011). Studying supply chains from a social network perspective. Journal of Supply Chain Management, 47(1), 4-8.

    Garvey, M. D., Carnovale, S., & Yeniyurt, S. (2015). An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research, 243(2), 618-627.

    Hachicha, W., & Elmsalmi, M. (2014). An integrated approach based-structural modeling for risk prioritization in supply network management. Journal of Risk Research, 17(10), 1301-1324.

    He, J., Huang, Y., & Chang, D. (2015). Simulation-based heuristic method for container supply chain network optimization. Advanced Engineering Informatics, 29(3), 339-354.

    Hsieh, L.-F., & Lin, L.-H. (2010). A performance evaluation model for international tourist hotels in Taiwan—An application of the relational network DEA. International Journal of Hospitality Management, 29(1), 14-24.

    Hsu, J. y. (2017). State transformation and the evolution of economic nationalism in the East Asian developmental state: the Taiwanese semiconductor industry as case study. Transactions of the Institute of British Geographers, 42(2), 166-178.

    Hung, H.-C., Chiu, Y.-C., & Wu, M.-C. (2017). Analysis of Competition Between IDM and Fabless–Foundry Business Models in the Semiconductor Industry. IEEE Transactions on Semiconductor Manufacturing.

    Irizarry, J., Karan, E. P., & Jalaei, F. (2013). Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Automation in Construction, 31, 241-254.

    Izadikhah, M., & Saen, R. F. (2016). Evaluating sustainability of supply chains by two-stage range directional measure in the presence of negative data. Transportation Research Part D: Transport and Environment, 49, 110-126.

    Jamshidi, R., Ghomi, S. F., & Karimi, B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 19(6), 1876-1886.

    Jassbi, J., Seyedhosseini, S., & Pilevari, N. (2010). An adaptive neuro fuzzy inference system for supply chain agility evaluation. International Journal of Industrial Engineering & Production Research, 20(4), 187-196.

    Kachitvichynaukul, V., Sethanan, K., & Golińska-Dawson, P. (2015). Toward Sustainable Operations of Supply Chain and Logistics Systems: Springer.

    Kadadevaramath, R. S., Chen, J. C., Shankar, B. L., & Rameshkumar, K. (2012). Application of particle swarm intelligence algorithms in supply chain network architecture optimization. Expert systems with Applications, 39(11), 10160-10176.

    Kannan, D., de Sousa Jabbour, A. B. L., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research, 233(2), 432-447.

    Kazemi, S. S., & Sanaei, A. A. (2014). Assessing Supply Chain Management in the Context of Iran’s Five Star Hotel: The Case of Tehran Azadi Hotel.

    Khodakarami, M., Shabani, A., Saen, R. F., & Azadi, M. (2015). Developing distinctive two-stage data envelopment analysis models: An application in evaluating the sustainability of supply chain management. Measurement, 70, 62-74.

    Kim, Y., Choi, T. Y., Yan, T., & Dooley, K. (2011). Structural investigation of supply networks: A social network analysis approach. Journal of Operations Management, 29(3), 194-211.

    Kravanja, Z., & Čuček, L. (2013). Multi-objective optimisation for generating sustainable solutions considering total effects on the environment. Applied energy, 101, 67-80.

    Lee, H., Plambeck, E. L., & Yatsko, P. (2012). Embracing green in China--with an NGO nudge. Supply Chain Management Review, 16(2).

    Lee, S. M., Tae Kim, S., & Choi, D. (2012). Green supply chain management and organizational performance. Industrial Management & Data Systems, 112(8), 1148-1180.

    Lin, J. T., & Chen, C.-M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory, 51, 100-114.

    Lin, R.-J. (2013). Using fuzzy DEMATEL to evaluate the green supply chain management practices. Journal of Cleaner Production, 40, 32-39.

    Liu, J. S., Lu, L. Y., Lu, W.-M., & Lin, B. J. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3-15.

    Liu, S., & Papageorgiou, L. G. (2013). Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega, 41(2), 369-382.

    Lorentz, H., Kittipanya-ngam, P., & Srai, J. S. (2013). Emerging market characteristics and supply network adjustments in internationalising food supply chains. International Journal of Production Economics, 145(1), 220-232.

    M. Tachizawa, E., & Yew Wong, C. (2014). Towards a theory of multi-tier sustainable supply chains: a systematic literature review. Supply Chain Management: An International Journal, 19(5/6), 643-663.

    Macchion, L., Moretto, A., Caniato, F., Caridi, M., Danese, P., & Vinelli, A. (2015). Production and supply network strategies within the fashion industry. International Journal of Production Economics, 163, 173-188.

    MALHAN, S. (2015). Impact Of Demographic And Entrepreneur’s Profile On Level Of Supply Chain Management Ractices In Selected Small Scale And Medium Entreprises (Smes) In Retail Sector. Supply Chain Management 2. SUPPLY CHAIN MANAGEMENT, 2.

    Mathiyazhagan, K., Govindan, K., NoorulHaq, A., & Geng, Y. (2013). An ISM approach for the barrier analysis in implementing green supply chain management. Journal of Cleaner Production, 47, 283-297.

    Meyr, H., Wagner, M., & Rohde, J. (2015). Structure of advanced planning systems Supply chain management and advanced planning (pp. 99-106): Springer.

    Monczka, R. M., Handfield, R. B., Giunipero, L. C., & Patterson, J. L. (2015). Purchasing and supply chain management: Cengage Learning.

    Olfat, L., Amiri, M., & Ebrahimpour Azbari, M. (2014). A Network data envelopment analysis model for supply chain performance evaluation: real case of Iranian pharmaceutical industry. International Journal of Industrial Engineering & Production Research, 25(2), 125-138.

    Pagani, P. (2014). An analytical model to determine reaction levels in a lean production system.

    Paksoy, T., Özceylan, E., & Weber, G.-W. (2013). Profit oriented supply chain network optimization. Central European Journal of Operations Research, 1-24.

    Paolucci, M., & Sacile, R. (2016). Agent-based manufacturing and control systems: new agile manufacturing solutions for achieving peak performance: CRC Press.

    Park, H., Bellamy, M. A., & Basole, R. C. (2016). Visual analytics for supply network management: System design and evaluation. Decision Support Systems, 91, 89-102.

    Pathak, S. D., Day, J. M., Nair, A., Sawaya, W. J., & Kristal, M. M. (2007). Complexity and adaptivity in supply networks: building supply network theory using a complex adaptive systems perspective. Decision Sciences, 38(4), 547-580.

    Qiang, Q., Ke, K., Anderson, T., & Dong, J. (2013). The closed-loop supply chain network with competition, distribution channel investment, and uncertainties. Omega, 41(2), 186-194.

    Ramanathan, U., & Gunasekaran, A. (2014). Supply chain collaboration: Impact of success in long-term partnerships. International Journal of Production Economics, 147, 252-259.

    Roh, J., Hong, P., & Min, H. (2014). Implementation of a responsive supply chain strategy in global complexity: The case of manufacturing firms. International Journal of Production Economics, 147, 198-210.

    Sarkis, J. (2012). A boundaries and flows perspective of green supply chain management. Supply Chain Management: An International Journal, 17(2), 202-216.

    Sarkis, J. (2013). Green Supply Chain Management: McGraw-Hill Education.

    Singh Srai, J., Holweg, M., MacCarthy, B. L., & Jayarathne, P. (2013). Supply network structures in the international clothing industry: differences across retailer types. International Journal of Operations & Production Management, 33(7), 858-886.

    Sinuany-Stern, Z., & Friedman, L. (1998). DEA and the discriminant analysis of ratios for ranking units. European Journal of Operational Research, 111(3), 470-478.

    Skinner, W. (1969). Manufacturing-missing link in corporate strategy.

    Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: A review. IIE Transactions, 48(2), 89-109.

    Soleimani, H., & Kannan, G. (2015). A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling, 39(14), 3990-4012.

    Tachizawa, E. M., & Wong, C. Y. (2015). The performance of green supply chain management governance mechanisms: A supply network and complexity perspective. Journal of Supply Chain Management, 51(3), 18-32.

    Tajbakhsh, A., & Hassini, E. (2015). A data envelopment analysis approach to evaluate sustainability in supply chain networks. Journal of Cleaner Production, 105, 74-85.

    Tavassoli, M., Faramarzi, G. R., & Saen, R. F. (2015). A joint measurement of efficiency and effectiveness using network data envelopment analysis approach in the presence of shared input. Opsearch, 52(3), 490-504.

    Thomas, K. F. (2014). A new integrated design framework for the facility layout problem. Purdue University.

    Tognetti, A., Grosse-Ruyken, P. T., & Wagner, S. M. (2015). Green supply chain network optimization and the trade-off between environmental and economic objectives. International Journal of Production Economics, 170, 385-392.

    Tokos, H., Pintarič, Z. N., & Yang, Y. (2013). Bi-objective optimization of a water network via benchmarking. Journal of Cleaner Production, 39, 168-179.

    Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243-252.

    Torgersen, A. M., Førsund, F. R., & Kittelsen, S. A. (1996). Slack-adjusted efficiency measures and ranking of efficient units. Journal of Productivity Analysis, 7(4), 379-398.

    Tseng, M.-L., Tan, R. R., & Siriban-Manalang, A. B. (2013). Sustainable consumption and production for Asia: sustainability through green design and practice. Journal of Cleaner Production, 40, 1-5.

    Tzeng, G.-H., & Huang, J.-J. (2013). Fuzzy multiple objective decision making: CRC Press.

    Vidalis, M., Koukoumialos, S., Diamantidis, A., & Blanas, G. (2015). Performance evaluation of a merge supply network: A production centre with multiple different reliable suppliers. SMMSO 2015, 255.

    Wang, Y.-F., Chen, S.-P., Lee, Y.-C., & Tsai, C.-T. S. (2013). Developing green management standards for restaurants: An application of green supply chain management. International Journal of Hospitality Management, 34, 263-273.

    Wheelwright, S. C., & Hayes, R. H. (1985). Competing through manufacturing. Harvard Business Review, 63(1), 99-109.

    Yang, C.-S., Lu, C.-S., Haider, J. J., & Marlow, P. B. (2013). The effect of green supply chain management on green performance and firm competitiveness in the context of container shipping in Taiwan. Transportation research part E: logistics and transportation review, 55, 55-73.
    Yang, C., & Liu, H.-M. (2012). Managerial efficiency in Taiwan bank branches: A network DEA. Economic Modelling, 29(2), 450-461.

    You, F., Grossmann, I. E., & Wassick, J. M. (2010). Multisite capacity, production, and distribution planning with reactor modifications: MILP model, bilevel decomposition algorithm versus Lagrangean decomposition scheme. Industrial & Engineering Chemistry Research, 50(9), 4831-4849.

    Zhang, X., & Zhao, Z. (2009). Study of green supply chain and its performance based on fuzzy AHP and measurement system. Paper presented at the E-Business and Information System Security, 2009. EBISS'09. International Conference on.

    Zhuo, Y., Xu, J., Wei, F., Xu, L., Lin, X., & Li, Z. (2016). Design of power supply network based on 500/110 kv for load center and comprehensive accessibility evaluation. CSEE Journal of Power and Energy Systems, 2(1), 30-39.

    無法下載圖示 本全文未授權公開
    QR CODE