研究生: |
蔡欣倫 Shin-Lun Tsai |
---|---|
論文名稱: |
翡翠樹蛙(Rhacophorus prasinatus)族群遺傳結構之探討 Population genetic study of Rhacophorus prasinatus |
指導教授: |
呂光洋
Lue, Kuang-Yang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 翡翠樹蛙 、族群遺傳 |
英文關鍵詞: | Rhacophorus prasinatus, population genetic |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
翡翠樹蛙(Rhacophorus prasinatus),為台灣特有兩棲類,目前僅侷限生活在台灣北部,桃園以北的山區,分別在天然林及耕作環境下都有發現,棲息地多為原始林邊緣或茶園等暫時性積水區,成小族群分布狀態。對於這種遷徙能力低、活動力又不強且對棲息地又有一定的忠誠度,同時分布地區又常有人為環境切割了自然地貌的物種而言,了解其野外族群的遺傳結構是有一定的重要性的。此可以提供適當的資料以利對此物種日後的研究及保育。本實驗將研究台灣特有種翡翠樹蛙的族群遺傳結構,藉由這種侷限分佈在臺灣北部的蛙類進行採集後,與其地形及水域分佈做分析比較,探討其遺傳結構概況,依水系採集了七個樣點,共76隻樣本。結果發現,翡翠樹蛙Fst為0.0891 ~ 0.1461之間,在南北勢溪、大漢溪間雖有中度分化,但彼此間的基因交流仍然很順暢,Nm值皆大於1;h值為0.8295、π值為0.0047,顯示有高的單基因型歧異度與低的核苷酸歧異度,亦顯示翡翠樹蛙可能有少數個體組成的祖先成長而來的,且其成長時間已足夠以累積恢復基因型的變異,而各地皆共有一個相同的單基因型,亦有獨自特有的單基因型,但彼此間變異差距不大。利用AMOVA分析發現其變異大多產生在族群內個體間,為89.48%。而翡翠樹蛙族群最大遺傳距離為0.0102,在台灣目前有研究的兩棲類中僅高於諸羅樹蛙。
Rhacophorus prasinatus is an endemic species of Taiwan. Currently it is found only in northern mountain region above Taoyuan. It can be found in nature forest and plantation, such as small temporary body in tea plantation. Rhacophorus prasinatus has limited dispersal capabilities due to low mobility and site fidelity. It is important to know the population genetic structure of this species that can provide some useful informations for the future research of conservation. In this study, I invitegated the population genetic structure of Rhacophorus prasinatus, by comparing with landscape and streams. To understand what structure Rhacophorus prasinatus is. 76 individuals from three streams have been analysed. The result of Fst between 0.0891 ~ 0.1461, there are moderate differentiation between Nan-Shih Creek basin、Pei-Shih Creek basin and Tahen basin, but gene flow still can be found, Nm>1. Haplotype diversity=0.8295、nucleotide diversity=0.0047, have high haplotype diversity and low nucleotide diversity. It shows that Rhacophorus prasinatus maybe come from few individuals of ancestors. There is one haplotype shared by all individuals from sample sites, however, individuals of different sample sites have their own unique haplotype, but the difference in genetic variation between haplotype is small. In AMOVA, most genetic variance (89.48%) was explained by differences within population. The maximum intra-specific genetic variance is 0.0102, among amphibian being investigated in Taiwan, Rhacophorus prasinatus is higher than Rhacophorus arvalis only.
Andersen, L. W., Fog, K. and Damgaard, C. 2004. Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proceedings of the Royal Society of London Series B-Biological Sciences 271: 1293-1302.
Avise J. C., Arnold J., Ball R. M. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematic. Annual Review of Ecology and Systemics, 18: 489-522.
Avise J. C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York.
Avise J. C. 2000. Phylogeography : the history and formation of species. Harvard University Press, Cambridge, Massachusetts.
Barber, P. H. 1999. Patterns of gene flow and population genetic structure in the canyon treefrog, Hyla arenicolor (Cope). Molecular Ecology 8: 563-576.
Beebee, T. J. C. 2005. Conservation genetics of amphibians. Heredity 95: 423-427.
Cabe P. R., Page R. B., Hanlon T. J. , Aldrich M. E. , Connors L. and Marsh D.M. 2007. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98: 56-60.
Clough M. and Summers, K. 2000. Phylogenetic systematics and biogeography of the poison frogs: evidence from mitochondrial DNA sequences. Biological Journal of the Linnean Society 70: 515-540.
Dever J. A. 2007. Fine-scale genetic structure in the threatened Foothill Yellow-Legged Frog (Rana boylii). Journal of Herpetology 41: 168-173.
Driscoll D. A. 1998. Genetic structure of the frogs Geocrinia lutea and Geocrinia rosea reflects extreme population divergence and range changes, not dispersal barriers. Evolution 52: 1147-1157.
Excoffier L., Smouse P. E. and Quattro J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes - application to human mitochondrial-DNA restriction data. Genetics 131: 479-491.
Giordano A. R., Ridenhour B. J. and Storfer A. 2007. The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Molecular Ecology 16: 1625-1637.
Hartl D. L. and Clark A. G.1997. Principles of Population Genetics. 3 ed. Sinauer Associates, Sunderland. Massachusetts: 542.
Hedrick P. W. 1999. Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution 53: 313-318.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions trough comparative studies of nucleotide sequence. Molecular Evolution 16: 111-120.
Kumar S., Tamura K., Jakobsen I. B. and Nei M. 2001. MEGA2: Molecular Evolutionary Genetics Analysis. Arizona State University, Tempe, Arizona, USA.
Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209-220.
Measey G. J., Galbusera P., Breyne P. and Matthysen E. 2007. Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya. Conservation Genetics 8: 1177-1188.
Moritz C., Dowling T. E. and Brown W. M. 1987. Evolution of animal mitochondrial DNA: implications for population biology and systematics. Annual Review of Ecology and Systematics. 18.
Mou Y. P., Risch J. P. and Lue K.Y. 1983. Rhacophorus prasinatus, a new tree frog from Taiwan, China (Amphibia, Anura, Rhacophoridae). Alytes. 2: 154-162.
Mousset S., Derome N. and Veuille M. 2004. A test of neutrality and constant population size based on the mismatch distribution. Molecular Biology and Evolution 21: 724-731.
Nei M., and Tajima F. 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105: 205-217.
Nei M., and Tajima F. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY.
Reh W. and Seitz A. 1990. The Influence of Land-Use on the Genetic-Structure of Populations of the Common Frog Rana temporaria. Biological Conservation 54: 239-249.
Rothermel B. B. and Semlitsch R. D. 2002. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conservation Biology 16: 1324-1332.
Schneider S., Roessli D, and Excoffier L. 2000. Arlequin: A software for population genetics data analysis. Ver. 2.0. . Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva.
Scribner K. T., Petersen M. R., Fields R. L., Talbot S. L., Pearce J. M. and Chesser R. K. 2001. Sex-biased gene flow in spectacled eiders (anatidae): Inferences from molecular markers with contrasting modes of inheritance. Evolution 55: 2105-2115.
Shaffer G., Fellers G. M., Magee A. and Voss R. 2000. The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite Toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Molecular Ecology 9: 245-257.
Slatkin M. 1985. Gene flow in natural population. Annual Review of Ecology and Systematics 16: 393-430.
Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792.
Spear S. F., Peterson C. R., Matocq M. D. and Storfer A. 2005. Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Molecular Ecology 14: 2553-2564.
Storfer A. and Sih A. 1998. Gene flow and ineffective antipredator behavior in a stream-breeding salamander. Evolution 52: 558-565.
Wagner R. S., Miller M. P., Crisafulli C. M. and Haig S. M. 2005. Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli). Canadian Journal of Zoology-Revue Canadienne De Zoologie 83: 396-406.
White P. S., Owatha L. T., Tegelatröm H. and Densmore L. D. 1998. Mitochondrial DNA isolation, separation, and detection of fragments. In: Molecular genetic analysis of populations:a practical approach. (Ed. Hoelzel, A. R.). . Oxford University Press, New York, : 65-101.
Wright S. 1978. Evolution and genetics of populations. Chicago University Press, Chicago.
陳賜隆 1992. 翡翠樹蛙(Rhacophorus smaragdinus)生殖行為及生態學之研究。. 國立台灣師範大學生物研究所碩士論文。.
陳惠琦 1993. 梭德氏蛙(Rana sauteri)的粒線體DNA序列與族群變異之初探。. 國立台灣大學動物研究所碩士論文。.
楊懿如 1994. 台北樹蛙(Rhacophorus taipeianus)生殖生態與族群基因組成差異。. 國立台灣大學動物研究所博士論文。.
陳志遠 1995. 台灣綠色樹蛙屬之生物地理學與類源關係之研究。. 國立師範大學生物研究所碩士論文。.
葉文珊 1997. 莫氏樹蛙族群地理親源關係之研究。. 國立台灣大學動物研究所碩士論文。.
劉國強 1997. H粒線體核酸分析斯文豪氏攀蜥之生物地理與親緣關係。. 國立中山大學生命科學研究所碩士論文.
彭優惠 1997. 台灣小家鼠的族群分化與基因交流-微隨體DNA之應用。 國立台 灣大學動物研究所碩士論文。
黃堅庭 1998. 密度與食物量對翡翠樹蛙(Rhacophorus prasinatus)蝌蚪成長變態。. 國立師範大學生物研究所碩士論文。林獻升 2000. 台灣地區卵泡寄生蠅之研究。. 國立師範大學生物研究所碩士論文。.
廖德裕 1999. 台灣產埔里華吸鰍族群間分子親緣關係之研究。國立清華大學生命科學所碩士論文。
吳孟修 2000. 澎湖地區麗紋石龍子族群遺傳結構研究。. 國立師範大學生物研究所碩士論文。.
陳新言 2000. 高身白甲魚(Onychostoma alticorpus)族群間親緣地理學之研究。 國立清華大學生命科學所碩士論文。
劉怡里 2000. 以RAPD方法分析台灣產樹蛙屬樹蛙之族群遺傳結構。. 國立台灣大學動物研究所碩士論文。.
侯景祥 2001. 台灣香魚族群遺傳結構之研究。國立清華大學生命科學所碩士。
黃鈞漢 2002. 以mtDNA D-loop片段探討艾氏樹蛙(溪頭地區)之族群遺傳結構。. 國立彰化師範大學生物學系碩士論文。.
郭瓊華 2002. 台灣蜓蜥族群遺傳結構之研究。. 國立台灣師範大學生物研究所碩士論文。.
林思民 2003. 臺灣及鄰近地區草蜥屬的親緣關係與親緣地理學研究(有鱗目:蜥蜴科)。. 國立師範大學生物研究所博士論文。
官淑蕙 2004. 應用粒線體DNA D-loop片段探討彰化地區澤蛙之族群遺傳結構。. 國立彰化師範大學生物學系碩士論文。.
盧建名 2005. 棲地零碎化對諸羅樹蛙(Rhacophorus arvalis) 族群遺傳結構影響之探討。. 國立台灣師範大學生命科學系碩士論文。.
林旻儀 2006. 台灣地區外來種亞洲錦蛙(Kaloula pulchra)族群遺傳結構及來源之研究。. 國立台灣師範大學生命科學系碩士論文。.
李韻如 2006. 應用粒線體DNA D-loop部分片段探討彰化地區黑眶蟾蜍之族群遺傳結構。 國立彰化師範大學生物學系碩士論文。