簡易檢索 / 詳目顯示

研究生: 鄭凱駿
Cheng, Kai-Chun
論文名稱: AGG 插入對於導致 X 染色體脆折症的 CGG 三核苷酸重複序列形成的髮夾型結構與結構動態學的影響
Influences of AGG Insertions on the Structures and Structural Dynamics of CGG Trinucleotide Repeat DNA Hairpins Associated with Fragile X Syndrome
指導教授: 李以仁
Lee, I-Ren
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 單分子螢光共振能量轉移圓二色性光譜基因擴張CGG三核苷酸重複序列X染色體脆折症結構動態學DNA 髮夾型結構
英文關鍵詞: smFRET, CD spectroscopy, Gene expansion, CGG trinucleotide repeat, Fragile X chromosome, Structural dynamics, DNA hairpin
DOI URL: http://doi.org/10.6345/NTNU202001316
論文種類: 學術論文
相關次數: 點閱:105下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染色體脆折症是一種常見的遺傳神經性疾病,其發病原因與人體中 FMR1 中 CGG三核苷酸重複序列不正常擴張有關。在正常個體中,CGG 重複次數低於54次,並會穩定地傳給子代;發病的個體中,CGG 重複次數大於200次,造成 FMR1 基因啟動子甲基化區域過多,使腦部無法正常生成 FMRP (Fragile X Mental Retardation 1 fusion protein),進而影響智力上的發展。
    正常人體中,每8到11個CGG序列存在著1個 AGG 的中斷,且約 65%個體中的 FMR1 5’UTR 的 CGG 重複序列中含有兩個AGG的中斷,但AGG 序列對於 CGG 重複序列的影響仍尚未釐清。因此我們利用單分子螢光共振能量轉移光譜,配合圓二色性光譜,對於 CGG 重複序列與插入 AGG 的 CGG 重複序列做一系列的結構與結構動態學的研究。研究結果顯示富含 CGG 的重複序列在生理相關鹽類濃度下,難以形成鳥嘌呤四聯體,CGG 重複序列的主要構型為接近對齊之露出1個核苷酸的突出的髮夾型結構,透過時間解析發現奇數重複次數的CGG 重複序列存在髮夾型結構的滑動現象,但以後的序列以露出1個核苷酸的突出髮夾型結構為主。當插入一組 AGG 後的序列以露出1個及3個核苷酸的突出髮夾型結構兩種構型為主,與 CGG 重複序列相同都有髮夾型結構的滑動,但平衡向露出3個核苷酸的突出髮夾型結構偏移。插入兩組 AGG 後依中間的 CGG 重複次數分成奇數間隔組與偶數間隔組,奇數間隔組以露出3個核苷酸的突出髮夾型結構為主,偶數間隔組則有露出1個及3個核苷酸的突出髮夾型兩種主要結構,但無論是奇數間隔組或是偶數間隔組皆沒有觀察到構型之間的轉換。
    根據本實驗室先前提出的擴張理論,CGG 重複序列傾向形成對齊或接近對齊髮夾型結構,較易進行不正常的擴張而變成更長的序列,而髮夾結構的滑動重組可使序列在擴張後回到對齊或接近對齊髮夾型結構而繼續擴張形成循環。而本篇論文發現,插入一組 AGG 後序列構型由長突出髮夾型結構轉變成接近髮夾型結構的速率降低,減緩了序列的擴張,插入兩組 AGG 後序列的構型則是穩定不易產生滑動的,使序列在複製時更不會被擴張,因此我們認為 AGG 插入對於結構動態滑動至利於擴張的對齊髮夾型結構動態平衡影響,是抑制 CGG 重複序列擴張的可能原因。

    Overexpansion of the CGG trinucleotide repeat (TNR) in the fragile X mental retardation 1 (FMR1) region is responsible for the fragile X syndrome, a common genetic neurodegenerative disease. In healthy individuals, the repeat number of the healthy individuals remain below 54, while in pathological samples, the repeat number goes exceed 200. Abnormal expansion of CGG leads to hypermethylation of the FMR1 gene, which leads to the inhibition of Fragile X Mental Retardation 1 fusion protein (FMRP), a crucial protein for the development of intelligence production. However, the tandem CGG motif is usually interrupted by an AGG triplet in a frequency of one per 8 to 11 repeats in healthy individuals, and ~65% CGG motif in FMR1 5’UTR carries two AGG interruptions. However, the role of AGG insertion in abnormal expansion remains elusive.
    Here, we use single-molecule fluorescence resonance energy transfer (smFRET) and circular dichroism (CD) spectroscopy to study the structures and structural dynamics of tandem CGG repeats and those with AGG triplet insertions. Our result shows that G-quadruplexes are unlikely to be formed under physiological conditions in both cases. Instead, CGG repeat folds into a near blunt-end hairpin with 1-nucleotide (nt) overhang. Our time-dependent experiment reveals that the odd-numbered CGG repeat hairpin mainly folds into 3-nt overhang hairpin with transient slippage hairpin structural rearrangement to the 1-nt overhang configuration. With one AGG insertion, interconversion between two major configurations in CGG repeats were still observed, but with a new equilibrium lean to the 3-nt overhang state. With two AGG insertion, parity dependence on the repeat number of CGG spacer units between two AGG was found. The odd-numbered CGG spacer sequences mainly fold into a 3-nt overhang hairpin structure. While the even-numbered CGG spacer unit folds into two major hairpin structures with 1-nt and 3-nt overhang. Neither of them shows interconversion between configurations. With the DNA expansion model proposed by our group, TNR with blunt-end or near blunt-end hairpin configuration has a higher potency of undergoing abnormal expansion. Slippage of TNR hairpins could bring the hairpin with newly synthesized DNA segment back to its (near) blunt-end configuration, and thus, continue another expansion cycle. With one AGG insertion, the conversion from 3-nt overhang hairpin to the 1-nt hairpin gets retarded, which could slow down the abnormal expansion. With two AGG insertions, the slippage hairpin reconfiguration is virtually stopped, possibly inhibits the abnormally expansions. In conclusion, we believe that the impact on the hairpin structures and slippage hairpin reconfiguration by the interruption of AGG insertion to the CGG tandem repeats plays a crucial role in inhibiting the abnormal expansion of CGG repeats.

    致謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xiii 第一章、緒論 1 1-1 前言 1 1-2 X染色體脆折症 3 1-2.1 X染色體脆折症致病原因 4 1-3 DNA重複序列的擴張 6 1-4 CGG重複序列已知的二級結構 8 1-4-1 髮夾型結構 8 1-4-2 鳥嘌呤四聯體 9 1-5 AGG插入對於CGG重複序列的影響 10 1-6 重複序列髮夾型結構的動態滑動及其擴張的關係 11 1-7 研究動機 12 第二章、實驗方法與儀器 13 2-1 實驗技術 13 2-1.1 單分子實驗技術 13 2-1.2螢光原理介紹 14 2-1.3螢光共振能量轉移 15 2-1.4螢光染料的選用 17 2-1.5 全內反射式螢光顯微鏡 18 2-1.6圓二色性光譜 (Circular dichroism spectrum) 20 2-2 實驗樣品製備 21 2-2.1 實驗序列設計 21 2-2.2 螢光分子的標記 23 2-2.3 寡核苷酸黏合反應 24 2-2.4 樣品槽製備與組裝 25 2-2.5 DNA 黏合反應 (annealing) 28 2-2.6:樣品固定於樣品槽 29 2-2.7:顯像緩衝溶液 (Image Buffer) 30 2-2.8:酵素型除氧系統 32 2-3 數據處理與分析 34 2-3.1 數據處理 34 2-3.2 動態擬合分析 37 第三章、實驗結果與討論 39 3-1 單分子實驗鑑定物 (assay) 設計 39 3-2 CGG 重複序列 40 3-2.1 單分子結構鑑定 40 3-2.2 鹽類對於序列的影響 41 3-2.3 長時間軌跡圖 42 3-3 插入1組 AGG 的 CGG 重複序列 43 3-3.1 單分子結構鑑定 43 3-3.2 鹽類對於序列的影響 44 3-3.3 長時間軌跡圖 45 3-4重複序列的圓二色性光譜 47 3-5 髮夾型結構鑑定 48 3-6 插入2組AGG的CGG重複序列 51 3-6.1 單分子結構鑑定 51 3-6.2長時間軌跡圖 54 3-6.3鹽類對於插入2組AGG的CGG重複序列的影響 55 3-7插入2組AGG的CGG重複序列的圓二色型光譜 57 第四章、結論 60 4-1.CGG 重複序列與插入 AGG 的 CGG 重複序列可能之構型 60 4-2.DNA在人體中的擴張模型 61 參考文獻 63

    [1] Polak U, McIvor E, Dent SYR, Wells RD, Napierala M. Expanded complexity of unstable repeat diseases. BioFactors 2013;39:164–75.
    [2] Warren, S. T., & Ashley, C. T. Triplet Repeat Expansion Mutations: The Example of Fragile X Syndrome. Annual Review of Neuroscience. 1995, 18(1), 77–99.
    [3] Saldarriaga W, Tassone F, González-Teshima LY, Forero-Forero JV, Ayala-Zapata S, Hagerman R. Fragile X Syndrome. Colomb Med. 2014; 45(4): 190-8
    [4] Ni C-W, Wei Y-J, Shen Y-I, Lee I-R. Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences. J Phys Chem Lett 2019;10:3985–90.
    [5] Richard G-F. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends in Genetics 2015;31:177–186..
    [6] Lubs H.A. A marker X chromosome. Am. J. Hum. Genet. 1969, 21:231–244.
    [7] Verkerk JMH, Sutcliffe JS. Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome Cell, 1991, 65(5), 905–914.
    [8] Berman RF, Buijsen RA, Usdin K, Pintado E, Kooy F, Pretto D, et al. Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. J Neurodevelop Disord 2014;6:25.
    [9] Amancio AP, de O. Melo CA, de M. Vieira A, Minasi LB, de M. e Silva D, da Silva CC, et al. Molecular analysis of patients suspected of Fragile X Syndrome. Genet Mol Res 2015;14:14660–9.
    [10] Verheij, C., Bakker, C. E., de Graaff, E., Keulemans, J., Willemsen, R., Verkerk, A. J. M. H., Oostra, B. A. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature, 1993,363(6431), 722–724
    [11] Ambrosi C, Manzo M, Baubec T. Dynamics and Context-Dependent Roles of DNA Methylation. Journal of Molecular Biology 2017;429:1459–75. .
    [12] Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacol 2013;38:23–38.
    [13] Muerdter F, Stark A. Gene Regulation: Activation through Space. Current Biology 2016;26:895–8.
    [14] Mirkin SM. Expandable DNA repeats and human disease. Nature 2007;447:932–40.
    [15] Change Tan and Jeffrey P. Tomkins . Information Processing Differences Between Bacteria and Eukarya—Implications for the Myth of Eukaryogenesis Answers Research Journal 8 .2015, 143–162
    [16] Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Critical Reviews in Biochemistry and Molecular Biology 2015;50:142–67.
    [17] Hagihara M, He H, Kimura M, Nakatani K. A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats. Bioorganic & Medicinal Chemistry Letters 2012;22:2000–3.
    [18] Fojtik P. The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes. Nucleic Acids Research 2004;32:298–306.
    [19] James D. Watson - (1992). Molecular Biology of the Gene Pearson
    [20] Amrane S, Mergny J-L. Length and pH-dependent energetics of (CCG)n and (CGG)n trinucleotide repeats. Biochimie 2006;88:1125–34.
    [21] Bhasikuttan AC, Mohanty J. Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chem Commun 2015;51:7581–97.
    [22] Renčiuk D, Zemánek M, Kejnovská I, Vorlíčková M. Quadruplex-forming properties of FRAXA (CGG) repeats interrupted by (AGG) triplets. Biochimie 2009;91:416–22.
    [23] Eichler EE, Hammond HA, Macpherson JN, Ward PA, Nelson DL. Population survey of the human FMR1 CGG repeat substructure suggests biased polarity for the loss of AGG interruptions. Hum Mol Genet 1995;4:2199–208.
    [24] Eichler, E. E., Holden, J. J. A., Popovich, B. W., Reiss, A. L., Snow, K., Thibodeau, S. N., Nelson, D. L. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genetics, 1994, 8(1), 88–94.
    [25] Jarem DA, Huckaby LV, Delaney S. AGG Interruptions in (CGG)n DNA Repeat Tracts Modulate the Structure and Thermodynamics of Non-B Conformations in Vitro. Biochemistry 2010;49:6826–37.
    [26] Huang T-Y, Chang C, Kao Y-F, Chin C-H, Ni C-W, Hsu H-Y, et al. Parity-dependent hairpin configurations of repetitive DNA sequence promote slippage associated with DNA expansion. PNAS, 2017, 114, 9535-9540.
    [27] Ritort F. Single-molecule experiments in biological physics: methods and applications. J Phys: Condens Matter 2006;18: 531–83.
    [28] Drummen G. Fluorescent Probes and Fluorescence (Microscopy) Techniques — Illuminating Biological and Biomedical Research. Molecules 2012;17:14067–90..
    [29] Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012;17:4047–132.
    [30] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001;2:764–74.
    [31] 李以仁、許顥頤、秦志皞、吳佳諭。2015。單分子螢光共振能量轉移光譜簡介。化學,73卷4期,303-12。
    [32] 倪丞緯。以單分子光譜觀測 CTG 重複序列的滑動現象。2017。碩士學位論文。台北:國立臺灣師範大學化學所
    [33] G.D. Fasman (1996) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer
    [34] Małgowska M, Gudanis D, Teubert A, Dominiak G, Gdaniec Z. How to study G-quadruplex structures. Bta 2012;4:381–90.
    [35] Grewer C, Brauer H-D. Mechanism of the Triplet-State Quenching by Molecular Oxygen in Solution. J Phys Chem 1994;98:4230–5.
    [36] Cordes T, Vogelsang J, Tinnefeld P. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J Am Chem Soc 2009;131:5018–9.
    [37] Swoboda M, Henig J, Cheng H-M, Brugger D, Haltrich D, Plumeré N, et al. Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments. ACS Nano 2012;6:6364–9.
    [38] McKinney SA, Joo C, Ha T. Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling. Biophysical Journal 2006;91:1941–51.
    [39] Usdin K, Woodford KJ. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucl Acids Res 1995;23:4202–9.
    [40] Ida R, Wu G. Direct NMR Detection of Alkali Metal Ions Bound to G-Quadruplex DNA. J Am Chem Soc 2008;130:3590–602.
    [41] 沈洋逸。2017。利用單分子技術研究與染色體易碎症相關的 d(CGG) 重複序列及其抑制疾病的變異序列之構型動態學。碩士學位論文。台北:國立臺灣師範大學化學所
    [42] Eichler E. Haplotype and interspersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome. Human Molecular Genetics 1996;5:319–30.
    [43] Dombrowski C. Premutation and intermediate-size FMR1 alleles in 10 572 males from the general population: loss of an AGG interruption is a late event in the generation of fragile X syndrome alleles. Human Molecular Genetics 2002;11:371–8.
    [44] Wester, P. O..Magnesium. The American Journal of Clinical Nutrition,1987, 45(5), 1305–1312.
    [45] Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, et al. Interruptions in the Triplet Repeats of SCA1 and FRAXA Reduce the Propensity and Complexity of Slipped Strand DNA (S-DNA) Formation . Biochemistry 1998;37:2701–8..

    下載圖示
    QR CODE