研究生: |
Nair, Stephen Nair, Stephen |
---|---|
論文名稱: |
熱退火對MoS2薄膜表面形貌和螢光特性的效應 Annealing effect on morphology and Photoluminescence of MoS2 thin films |
指導教授: |
駱芳鈺
Lo, Fang-Yuh |
口試委員: | 駱芳鈺 洪振湧 林文欽 |
口試日期: | 2021/07/27 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 47 |
英文關鍵詞: | MoS2, Thin-film, Quantum Dots, Annealing, Photoluminescence |
研究方法: | 實驗設計法 、 準實驗設計法 、 Experimental research |
DOI URL: | http://doi.org/10.6345/NTNU202101684 |
論文種類: | 學術論文 |
相關次數: | 點閱:145 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Molybdenum disulfide (MoS₂) has attracted attention due to its unique electronic and optical properties from bulk indirect bandgap (~1.2 eV) to direct bandgap (~1.8 eV) in monolayer. The MoS₂ thin films were fabricated using the three-zone chemical vapor deposition (CVD) in a quasi-closed crucible. Effect of thermal annealing on MoS₂ thin films and formation of MoS₂ quantum dots (QDs) were investigated by Raman-scattering and photoluminescence (PL) spectroscopy, as well as atomic force microscopy (AFM) and polarization dependent PL.
Topography characterization showed that MoS₂ QDs and holes were formed from post thermal annealing for 0.5 hours at 350°C in the air, due to the formation of sulfur deficiencies at the MoS₂ film. The diameter of the QDs range from 10 to 30 nm, and as the annealing time was extended, the size and the number of QDs increased. A slight increase in MoS₂ thin film thickness can be observed based from the Raman shift difference between A1g and E_2g^1 peaks. Subsequent 30-minute thermal annealing at 350°C in the air led to both further QD growth and layer thinning. The MoS2 thin films were completely evaporated after 4 hours of annealing. PL spectra showed that the A exciton emission line red-shifted slightly and the intensity increased with annealing duration while the peak width remained mostly unchanged. The redshift is due to formation of S deficiency; increase in intensity is attributed to QD formation. Moreover, polarization-resolved PL spectra showed no trend as annealing time was increased
[1] Ravindra N.M., Tang W., Rassay S. (2019) Transition Metal Dichalcogenides Properties and Applications. In: Pech-Canul M., Ravindra N. (eds) Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-030-02171-9_6
[2] Li, H., Shi, Y., Chiu, M. H. & Li, L. J. Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 18, 293–305 (2015).
[3] Moghadasi, A., Roknabadi, M. R., Ghorbani, S. R. & Modarresi, M. Electronic and phononic modulation of MoS2 under biaxial strain. Phys. B Condens. Matter 526, 96–101 (2017).
[4] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
[5] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
[6] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, (2017).
[7] Lv, R. et al. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56–64 (2015).
[8] Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1–12 (2018).
[9] Li, H. et al. From bulk to monolayer MoS 2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
[10] Kaplan, D. et al. Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures. 2D Mater. 3, 15005 (2016).
[11] Shang, M. H. et al. Elimination of S Vacancy as the Cause for the n-Type Behavior of MoS2 from the First-Principles Perspective. J. Phys. Chem. Lett. 9, 6032–6037 (2018).
[12] Velický, M. & Toth, P. S. From two-dimensional materials to their heterostructures: An electrochemist's perspective. Appl. Mater. Today 8, 68–103 (2017).
[13] Li, H. et al. From bulk to monolayer MoS 2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
[14] Liu, H. F., Wong, S. L. & Chi, D. Z. CVD Growth of MoS2-based Two-dimensional Materials. Chem. Vap. Depos. 21, 241–259 (2015).
[15] Yang, Y. et al. Growth of monolayer MoS2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition. Chem. Phys. Lett. 679, 181–184 (2017).
[16] Özden, A., Ay, F., Sevik, C., & Perkgöz, N. K. (2017). CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio. Japanese Journal of Applied Physics, 56(6S1), 06GG05. doi:10.7567/jjap.56.06gg05.
[17] Liu, H. et al. Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Res. 10, 643–651 (2017).
[18] Zhu, Z. et al. Influence of growth temperature on MoS2 synthesis by chemical vapor deposition. Mater. Res. Express 6, 95011 (2019).
[19] Nguyen, V. T. et al. Large-scale chemical vapor deposition growth of highly crystalline MoS2 thin films on various substrates and their optoelectronic properties. Curr. Appl. Phys. 19, 1127–1131 (2019).
[20] Li, H., Zhu, X., Tang, Z. K. & Zhang, X. H. Low-temperature photoluminescence emission of monolayer MoS2 on diverse substrates grown by CVD. J. Lumin. 199, 210–215 (2018).
[21] Li, H. et al. From bulk to monolayer MoS 2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
[22] Kim, H. J. et al. Changes in the Raman spectra of monolayer MoS2 upon thermal annealing. J. Raman Spectrosc. 49, 1938–1944 (2018).
[23] Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. A.C.S. Nano 4, 2695–2700 (2010).
[24] Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B - Condens. Matter Mater. Phys. 84, 1–8 (2011).
[25] Su, L., Zhang, Y., Yu, Y. & Cao, L. Dependence of coupling of quasi-2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 6, 4920–4927 (2014).
[26] McCreary, K. M., Hanbicki, A. T., Sivaram, S. V. & Jonker, B. T. A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. A.P.L. Mater. 6, (2018).
[27] Sarkar, A. S. et al. Robust B-exciton emission at room temperature in few-layers of MoS2: Ag nano heterojunctions embedded into a glass matrix. Sci. Rep. 10, 1–10 (2020).
[28] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010).
[29] Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., & Eda, G. (2012). Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. A.C.S. Nano, 7(1), 791–797. doi:10.1021/nn305275h
[30] Sun, W. Atomic Force Microscopy in Molecular and Cell Biology. At. Force Microsc. Mol. Cell Biol. (2018) doi:10.1007/978-981-13-1510-7.
[31] Jalili, N. & Laxminarayana, K. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics 14, 907–945 (2004).
[32] Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).
[33] O.A. Bauchau, J.I. Craig, Euler-Bernoulli beam theory, Solid Mechanics and its Applications, DOI (2009) 173-221.
[34] Rodriguez, J.S.D 2020, Nanoscale Investigation of the Mechanical and Electrical Properties of Polyaniline/Graphene Oxide Composite Thin Films Fabricated by Physical Mixture Method, National Taiwan Normal University, Taipei Taiwan.
[35] Hahn, D. W. Raman Scattering Theory. Dep. Mech. Aerosp. Eng. Univ. Florida 1–13 (2007).
[36] Long, D. A. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. 2002. West Sussex, England: John Wiley & Sons Ltd vol. 8 (2002).
[37] Wang, F., Liu, X. K. & Gao, F. Fundamentals of solar cells and light-emitting diodes. Advanced Nanomaterials for Solar Cells and Light Emitting Diodes (Elsevier Inc., 2019). doi:10.1016/B978-0-12-813647-8.00001-1.
[38] Capellini, V., Constantinides, A. G. & Matter, C. Editor Optical Characterization of Semiconductors: Infrared, Raman, and.
[39] Liqiang, J. et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006).
[40] Joseph H. Simmons and Kelly S. Potter: Optical Materials.
[41] Lin, Y.-C. & Kuo, H.-C. Study of Mesostructural Materials Constructed Nano-optoelectronics. (2004).
[42] Meyer, G. & Amer, N. M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988).
[43] Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS 2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).
[44] Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).