簡易檢索 / 詳目顯示

研究生: 郭章億
KUO JANG YI
論文名稱: 尼伯特颱風(2016)離台後的西南氣流和強降雨之數值模擬研究
Numerical Studies of Southwesterly Flow and Heavy Rainfall after the Leaving of Typhoon NEPARTAK (2016) from Taiwan
指導教授: 簡芳菁
Chien, Fang-Ching
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 尼伯特颱風強降雨西南氣流中尺度對流系統虛擬探空福如數地形
DOI URL: http://doi.org/10.6345/NTNU202100024
論文種類: 學術論文
相關次數: 點閱:148下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尼伯特颱風於2016年7月8日開始影響台灣,登陸期間在台灣全台降下豪大雨,隨後在2016年7月9日至12日期間,尼伯特颱風離開台灣後,引入西南氣流為台灣西南部區域降下豪大雨,造成嚴重的土石流及水災。本研究使用WRF模式來模擬尼伯特颱風個案以及後續的西南氣流,來探討西南部山區強降雨之成因,並且針對尼伯特颱風離台之後,在西南部外海及南海北部上空大氣環境與西南氣流及颱風外圍環流造成強降雨進行敏感度實驗。
    模擬結果顯示,有兩波中尺度對流系統分別出現在模擬第一天時颱風外圍環流(西風)及西南氣流(西南風)在台灣海峽上輻合並隨著西南風氣流移入台灣地區,但台灣西南部迎風面區域環境呈現對流穩定之狀態因此對流移入迎風面地區較不易持續發展,模擬第三天時西南氣流及地形輻合,隨後受到地形效應影響,使得低層水氣凝結,與西南部外海移進的對流雨帶合併,使得對流發展增強,於西南部山區及平原降下強降雨。
    隨後本研究使用了3DVAR加入虛擬探空資料,於南海北部上空加入風速及濕度虛擬探空資料,來提升CTRL組第二天西南氣流較弱的情形。模擬結果顯示,增加水氣及風速後於南海北部、台灣西南部地區及外海區域水氣通量皆明顯增高,且位溫高,大氣環境呈現不穩定且暖濕,因此有利於西南氣流從南海北部移動至台灣西南部地區時能夠持續發展,並且西南部外海區域強西南風,將對流移入台灣地區,隨後受到地形效應影響,使得上升運動明顯增強,強對流為台灣西南部區域降下強降雨。
    本研究也利用改變地形高度來進行測試,從地形移除到高度提升,臺灣的降雨區域有隨著地形高度的增加出現愈來愈向南部區域集中之趨勢,由福如數可以得知福如數<0.5時,中央山脈阻擋效應明顯增加,此時的阻塞現象非常明顯,且出現了降水極值減少及降水區域往上游後退並且降雨區域變大之情形。

    目錄 致謝 i 摘要 ii 目錄 iii 圖表目錄 vi 第一章 、前言 1 1.1 文獻回顧 1 1.2 研究動機 4 第二章、個案介紹和觀測分析 6 2.1 尼伯特颱風(NEPARTAK;2016)個案簡介 6 2.2 綜觀天氣圖 6 2.3 累積雨量 7 2.4 雷達回波 9 2.5 衛星雲圖 9 2.6 小結 10 第三章 、資料來源與研究方法 11 3.1 資料來源 11 3.2 WRF模式簡介 11 3.3 3DVAR簡介 13 3.4 模式設定 13 3.5 模擬結果之分析方法 14 第四章 、尼伯特颱風及西南氣流之模擬結果分析 16 4.1 資料同化模擬結果與觀測校驗 16 4.2 定量降水校驗 19 4.3 環境熱力機制分析 21 4.4 水氣通量及氣流輻合 22 4.5 氣流軌跡線 23 4.6 強降水物理機制診斷分析 26 4.7 台灣西南部對流形成機制之時序變化 27 4.8 動量收支 29 4.9 水氣收支 30 4.10 小結 31 第五章、敏感度實驗 33 5.1 虛擬探空之敏感度分析 33 5.2 台灣西南方海域對流之影響 34 5.2.1 台灣西南方海域水氣傳輸 35 5.2.2 台灣西南方海域之大氣環境 36 5.3 地形敏感度實驗 38 5.3.1 地形高度對颱風路徑之影響 38 5.3.2 累積降雨差異分析 39 5.3.3 地形與台灣西南方海域對流之影響 40 5.3.4 降水物理機制差異分析 42 5.4 小結 43 第六章 、結論 45 6.1 總結 45 6.2 未來展望 48 參考文獻 50 附表 55 附圖 57

    林昌鴻、楊明仁、陳建河,2018:中央氣象局全球預報系統積雲參數法之改進與其對於 2011 年 DYNAMO 實驗期間 MJO 對流之模擬評估,大氣科學,46,406-424

    楊筑方,2009:北行颱風伴隨西南氣流之研究,大氣科學,37,27-48

    楊筑方:卡玫基颱風(2008)之數值模擬研究。國立台灣師範大學地球科學研究所,碩士論文,168頁

    陳詩庭:梅雨季西南氣流特性對台灣降水分佈影響之理想模擬研究。國立台灣師範大學地球科學研究所,碩士論文,76頁

    徐文達,2005:伴隨敏督利颱風(2004)的強烈西南氣流引發豪大雨之個案探討。國立中央大學大氣物理研究所,碩士論文,98頁

    廖啟勳,2005:地形降水對於環境條件與地形特性之敏感度測試:2維理想地形模擬研究。國立中央大學水文科學研究所,碩士論文,133頁
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of heavy rainfall occurrences in Taiwan. Wea. Forecasting, 22, 981–1002.

    Chien, F.-C.and H.-C. Kuo 2011: On extreme rainfall of Typhoon
    Morakot(2009). J. Geophys. Res.,116,10,1-22.

    Chien, F.-C., and Y.-H. Kuo, 2010: Impact of FORMOSAT-3/COSMIC GPS radio occultation and dropwindsonde data on regional model predictions during the 2007 Mei-yu season. GPS Solutions, 14, 51-63. DOI: 10.1007/s10291-009-0143-2. (SCI)

    Chien, F.-C., Y.-C. Liu, and C.-S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteor. Soc. Japan, 86, 17–41.

    Chiao, S., and Y.-L. Lin, 2003: Numerical modeling of an orographically enchanced precipitation event associated with tropical storm Rachel over Taiwan. Wea.Forecasting, 18, 325-344.

    Chou, K.-H., and C.-C. Wu, 2008: Typhoon initialization in a mesoscale model—Combination of the bogused vortex and the dropwindsonde data in DOTSTAR. Mon. Wea. Rev., 136, 865–879.
    Colle, B. A., 2004: Sensitivity of Orographic Precipitation to Changing Ambient Conditions and Terrain Geometries: An Idealized Modeling Perspective. J. Atmos. Sci., 61, 588–606.

    Feser, F., and H. von Storch, 2008: A dynamical downscaling case study for typhoons in SE Asia using a regional climate model. Mon. Wea. Rev., 136, 1806–1815.

    Fang, X., and Y.-H. Kuo, 2013: Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Wea. Rev., 141, 3908–3932.

    Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264–278.

    Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.

    Hendricks, E. A., J. R. Moskaitis, Y. Jin, R. M. Hodur, J. D. Doyle, and M. S. Peng, 2011: Prediction and diagnosis of Typhoon Morakot (2009) using the Naval Research :Laboratory’s mesoscale tropical cyclone model. Terr. Atmos. Oceanic Sci. (TAO).

    Hsiao, L.-F., C.-S. Liou, T.-C. Yeh, Y.-R. Guo, D.-S. Chen, K.-N. Huang, C.-T.Terng, and C.-H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in advance research WRF. Mon. Wea. Rev., 138, 3298-3315.

    Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 1164–1176

    Jang, W., and H.-Y. Chun, 2013: The effects of topography on the evolution of Typhoon Saomai (2006) under the influence of Tropical Storm Bopha (2006). Mon. Wea. Rev., 141, 468–489.

    Ko, K.-C., and P.-S. Chiu, 2014: ISO-modulating effects on the East Asian summer monsoon circulation patterns associated with southern Taiwan’s monsoon rainfall. Mon. Wea. Rev., 142, 3163–3177.

    K. K. W. Cheung, and Y.-Y. Lo, 2009:Numerical study of the rainfall event due to the interaction of Typhoon Babs(1998) and the Northeasterly Monsoon. Mon. Wea. Rev., 137, 2049-2064.

    Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16,633–660.

    Sugimoto,S.,N.A.Crook,J.Sun,Q.Xiao,and D.M.Barker,2009: An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation through Observing System Simulation Experiments.Mon.Wea.Rev.,137,4011-4029.

    Tao, W.-K., J. J. Shi, P.-L. Lin, J. Chen, S. Lang, M.-Y. Chang, M.-J. Yang, C.-C. Wu,Christa P.L., C.-H. Sui, and Ben J.-D. Jou, 2011: High-Resolution Numerical Simulation of the Extreme Rainfall Associated with Typhoon Morakot. Part I:Comparing the Impact of Microphysics and PBL Parameterizations with Observations. Terr. Atmos. Ocean. Sci., 22, 673-696.

    Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908–920.

    Wang, R., L. Wu, and C. Wang, 2011: Typhoon track changes associated with global warming. J. Climate, 24, 3748–3752.

    Wang, S.-Y., and T.-C. Chen, 2008: Measuring east Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J. Appl.Meteor. Climatol., 47, 2068–2080.

    Wu, C.-C., and Y.-H. Kuo, 1999: Typhoon affecting Taiwan─Current understanding
    and future challenges. Bull. Amer. Meteor. Soc., 80, 67-80.

    Wu, C.-C., K.-H. Chou, Y. Wang and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.

    Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part 17 I: Observational analysis. J. Atmos. Sci., 68, 2208-2221.

    Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, D. M. Barker, 2005: Assimilation of Doppler radar observations with a Regional 3DVAR System: Impact of Doppler Velocities on forecasts of a heavy rainfall case.J.Appl.Met.,44,768-78.

    Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee,D.M.Barker,and E.Lim 2007: An Approach of Radar Reflectivity Data Assimilation and Its Assessment with the Inland QPF of Typhoon Rusa (2002) at Landfall.J.Appl.Meteor.Climat.,46,14-22.

    Xiang, B., and Coauthors, 2015: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524–535.
    Yu, C.-K., and L.-W. Cheng, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., 71, 3202–3222.

    下載圖示
    QR CODE