簡易檢索 / 詳目顯示

研究生: 郭勝斌
Kuo, Sheng-Pin
論文名稱: 應用於四輪移動機器人車的動態避障系統
Dynamic Obstacle Avoidance System Applied to Four-wheel Mobile Robot Vehicles
指導教授: 呂藝光
Leu, Yih-Guang
口試委員: 吳政郎 張原彰 杜國洋 陶金旺 呂藝光
口試日期: 2021/07/30
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 103
中文關鍵詞: 四輪驅動車機械手臂行人偵測PID 控制模糊控制單目測距
英文關鍵詞: Four-wheel drive vehicle, robotic arm, pedestrian detection, PID control, fuzzy control, monocular ranging
DOI URL: http://doi.org/10.6345/NTNU202101246
論文種類: 學術論文
相關次數: 點閱:168下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由整合四輪驅動車與機械手臂,完成一台移動機器人車。我們設計一結合了光流法與 SVM 分類器的移動行人影像運動偵測系統,以實現移動機器人的動態避障功能。此外,亦設計了一僅以單一影像輸入的影像伺服控制系統,用以精確的控制機械手臂完成夾取作業。最後,整合上述兩項功能,使移動機器人可以在複雜的工作環境中避障移動以完成夾取作業。
    移動機器人車的移動速度控制功能是由模糊控制器串聯比例、積分及微分控制器(Proportional-Integral-Derivative, PID)在微控制器中實現。應用於機械手臂的影像伺服控制系統利用單目測距,以單一組攝影機提供的影像輸入計算出目標物件的世界座標。將此資訊回傳至微控制器後,由微控制器計算並控制機械手臂移動至夾取物體的姿態。
    最後,移動機器人車透過整合實驗,驗證此機器人可以完成夾取指定物件,並在移動過程中對於行人進行避障的任務。

    This thesis designs a mobile robot vehicle that combines a four-wheel vehicle and a robotic arm. We design a image motion detection system to capture moving pedestrians. This system is based on optical flow method and SVM classifier, and is applied as the input of the dynamic obstacle avoidance function. In addition, we also design an image servo control system that only uses a single image input to precisely control the robotic arm to complete the gripping operation. Finally, by integrating the above two functions, the mobile robot can avoid obstacles and complete the gripping operation while moving in a complex working environment.
    The movement speed control function of the mobile robot vehicle is completed by a fuzzy controller in series with a PID controller implemented in the microcontroller. The image servo control system uses a single input image to extract the coordinate of target objects with monocular ranging. After sending the coordinate to the microcontroller, the microcontroller calculates and controls the robot arm to move to the posture of the gripping object.
    Finally, this mobile robot vehicle verifies its object gripping and obstacle avoidance function through several experiments.

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 3 1.3 研究方法 3 1.4 論文架構 4 第二章  文獻探討與回顧 5 2.1 自動引導車 5 2.2 移動行人影像運動偵測 6 2.3 四輪驅動車運動學模型 8 第三章  移動機器人車之行人偵測與避障控制方法 10 3.1 行人偵測與移動計算 10 3.1.1 HOG特徵提取與SVM分類器 10 3.1.2 Lucus-Kanade光流法 11 3.2 模糊控制 16 3.2.1 模糊化 16 3.2.2 模糊推論引擎與模糊規則庫 20 3.2.3 解模糊化 22 3.3 PID控制器 23 3.4 機械手臂控制與其影像伺服控制 24 3.4.1 機械手臂關節座標系 24 3.4.2 機械手臂DH表 25 3.4.3 正向運動學 27 3.4.4 逆向運動學 30 3.5 機械手臂影像伺服控制 32 3.5.1 單目測距 32 3.5.2 相機內部參數 33 3.5.3 相機外部參數 34 3.5.4 像素座標系轉換世界坐標系 35 3.5.5 相機畸變 37 3.6 卡爾曼濾波器 38 3.6.1 卡爾曼濾波器的預測部分 38 3.6.2 卡爾曼濾波器的校正部分 38 第四章  移動機器人車之行人偵測與避障控制實現 42 4.1 移動機器人車系統架構 42 4.2 硬體架構 43 4.2.1 Raspberry Pi 4 44 4.2.2 微處理器 45 4.2.3 馬達與馬達驅動器 46 4.2.4 旋轉編碼器 47 4.2.5 US-100超音波測距模組 49 4.2.6 TBSN-K15伺服馬達 49 4.3 軟體架構 50 4.3.1 移動行人偵測系統 51 4.3.2 機械手臂影像伺服控制 55 4.3.3 四輪驅動車控制 57 第五章  實驗結果與討論 60 5.1 移動行人避障模擬實驗 60 5.2 移動行人避障實驗 68 5.3 機械手臂夾取實驗 79 5.4 移動機器人車夾取整合實驗 88 5.5 移動機器人車整合實驗 94 第六章  結論與未來展望 99 6.1 結論 99 6.2 未來展望 99 參考文獻 100 自傳 102 學術成就 103

    [1] Kiva system,from https://www.amazonrobotics.com/
    [2] Bastian Leibe and Konrad Schindler and Nico Cornelis and Luc Van Gool, “Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp.1683 – 1698, June 2008
    [3] Yunxia Chen and Yaohua Wu and Han Xing, “A complete solution for AGV SLAM integrated with navigation in modern warehouse environment,” 2017 Chinese Automation Congress (CAC), Jinan, China, January 2018
    [4] Minkuk Jung and Jae-Bok Song, “Graph SLAM for AGV using geometrical arrangement based on lamp and SURF features in a factory environment,” 2016 16th International Conference on Control, Automation and Systems (ICCAS), Gyeongju, Korea (South), October 2016
    [5] Zheng Zhang and Qing Guo and Juan Chen and Peijiang Yuan, “Collision-Free Route Planning for Multiple AGVs in an Automated Warehouse Based on Collision Classification,” IEEE Access, vol 6, pp.26022-26035, March 2018
    [6] M. Hashimoto and F. Oba and S. Zenitani, “Object-transportation control by multiple wheeled vehicle-planar Cartesian manipulator systems,” Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, May 1995
    [7] Nobutaka Kimura and Kiyoto Ito and Taiki Fuji and Keisuke Fujimoto and Kanako Esaki and Fumiko Beniyama and Toshio Moriya, “Mobile dual-arm robot for automated order picking system in warehouse containing various kinds of products,” 2015 IEEE/SICE International Symposium on System Integration (SII), Nagoya, Japan, Dec 2015
    [8] Kang Xue and Yue Liu and Jing Chen and Qin Li, “Panoramic background model for PTZ camera,” 2010 3rd International Congress on Image and Signal Processing, Yantai, China, Oct. 2010
    [9] Z. Cui and A. Li and K. Jiang, “Cooperative moving object segmentation using two cameras based on background subtraction and image registration,” Journal of Multimedia 9, vol.3, pp.363-370, 2014
    [10] Laksono Kurnianggoro and Ajmal Shahbaz and Kang-Hyun Jo, “Dense Optical Flow in Stabilized Scenes for Moving Object Detection from a Moving Camera,” 16th International Conference on Control Automation and Systems, 2016
    [11] Mohsen Kheirandish Fard and Mehran Yazdi and Mohammadali MasnadiShirazi, “A Block Matching Based Method for Moving Object Detection in Active Camera,” The 5th Conference on Information and Knowledge Technology, 2013
    [12] Lifei Liu and Long Zhao, “Moving target detection algorithm combined background compensation with optical flow,” 2014 IEEE Chinese Guidance, Navigation and Control Conference, 2014
    [13] Marie-Neige Chapela and Thierry Bouwmansb, “Moving Objects Detection with a Moving Camera: A Comprehensive Review” Computer Science Review, vol. 38, November 2020
    [14] J. L. Martinez, A. Mandow, J. Morales, S. Pedraza, and A. Garcia-Cerezo, “Approximating kinematics for tracked mobile robots,” Int. J. Robot. Res., vol. 24, no. 10, Oct. 2005, pp. 867–878
    [15] A. Mandow, J. L. Martłnez, J. Morales, J. Blanco, A. J. GarcłaCerezo and J. Gonzalez, “Experimental kinematics for wheeled skid-steer mobile robots,” Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Diego, CA, 2007, pp. 1222–1227
    [16] Jingang Yi, Dezhen Song, Junjie Zhang and Zane Goodwin, "Adaptive Trajectory Tracking Control of Skid-Steered Mobile Robots," Robotics and Automation, 2007.IEEE International Conference, 2007, pp. 2605-2610
    [17] Z. Song, Y. H. Zweiri, and L. D. Seneviratne, “Nonlinear observer for slip estimation of skid-steering vehicles,” Proc. IEEE Int. Conf. Robot. Autom., Orlando, FL, 2006, pp. 1499–1504
    [18] J. Y. Wong, Theory of Ground Vehicles, 3rd ed. New York: Wiley, 2001.
    [19] Wei Yu, Oscar Ylaya Chuy, Jr, Emmanuel G. Collins, Jr and Patrick Hollis, "Analysis and Experimental Verification for Dynamic Modeling of A Skid-Steered Wheeled Vehicle,” IEEE Transactions On Robotics, vol. 26, No. 2, pp. 340-353, 2010
    [20] Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary Bradski, “ORB: An efficient alternative to SIFT or SURF,” 2011 International Conference on Computer Vision, Barcelona, Spain, Nov. 2011,

    下載圖示
    QR CODE