簡易檢索 / 詳目顯示

研究生: 石曜嘉
Yao Chia Shih
論文名稱: 希爾伯特黃轉換應用於單筆腦電波訊號
Hilbert-Huang Transform Applied to Single-Trial EEG Signal Analysis and Classification
指導教授: 葉榮木
Yeh, Zong-Mu
蔡俊明
Tsai, Chun-Ming
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 164
中文關鍵詞: 腦電波大腦人機介面獨立成份分析法希爾伯特黃轉換時頻分析法經驗模態分解時頻空間分析法單筆資料分析訊號源定位支持向量機
論文種類: 學術論文
相關次數: 點閱:193下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腦人機介面為近幾年來很活躍的研究領域,然而腦電波包含著許多雜訊,並且具有非線性、非穩態等特性,所以腦電波的「特徵擷取」和「分類」為世界各國相關研究團隊共同努力的方向。本研究針對「特徵擷取」提供一套單筆腦電波分析法,可應用於大腦人機介面。此方法同時結合了獨立成份分析法和希爾伯特黃轉換來分析腦電波訊號。整個分析方法可以分為兩個階段:第一階段是利用獨立成份分析法的盲源分離特性把腦電波紀錄分解成具有時間、空間特性的成分;第二階段是利用一種時頻分析法,希爾伯特黃轉換將第一個階段所得到的成分做時頻分析。其中希爾伯特黃轉換的前半段架構被稱為經驗模態分解法,在本論文中用於訊號重建以及雜訊去除。當腦電波經過前面兩個階段的處理後,將可以同時保留腦電波的時間、頻率、空間特徵,建立時頻空間樣本。另外,本研究同時比較三種時頻分析法在處理腦電波訊號上的表現,分別為希爾伯特黃轉換、短時距傅立葉轉換、莫雷轉換。實驗結果為希爾伯特黃轉換在頻譜圖上不論高頻和低頻皆有較佳的解析度。
    在研究流程的最後一個階段,選擇支持向量機分類四種想像動作(想像左手動、想像右手動、想像腳動、想像舌頭動)的腦電波資料,對於想像右手動可到達83.33%的辨識率,而整體四種想像動作的平均辨識率為54.17%。另外,本研究結合經驗模態分解與快速獨立成份分析法定位想像動作之訊號源,平均準確率可達到72.12%。

    Brain computer interface (BCI) is a highly active field in the recent years. However, electroencephalogram (EEG) is a non-linear and non-stationary signal which contains various noises. Hence, the research groups in the world put effort into “feature extraction” and “classification” of EEG signal. In this study, an analysis strategy of single-trial EEG is developed for BCI and focus on “feature extraction”. The proposed method is to combine Independent Component Analysis (ICA) and Hilbert-Huang Transform (HHT) to analyze EEG. The EEG signal processing is performed in two stages: (1) ICA, a kind of Blind Source Separation (BSS), is used for dividing temporal-spatial components of EEG recordings; (2) HHT, a kind of temporal-frequency analysis (TFA), is used for processing these components. The empirical mode decomposition (EMD) in part of HHT is used for signal reconstruction and noise rejection. When the EEG is processed by above mentioned methods, the time-frequency-spatial features will be preserved. In additional, three kinds of TFAs (HHT, short time Fourier transform (STFT), and Morlet Transform) are experimented to compare the performance. The results show that the HHT has the better resolution in high frequency and low frequency.
    The last stage of the research, Support vector machine (SVM) is selected to classify EEG data of four motor imageries (left hand, right hand, foot, and tongue). The experiment result presents that the classification accuracy of imaging “right hand” moving is 83.33%, and total averaged accuracy is 54.17%. In additional, the method combined with both EMD and FastICA has 72.12% averaged accuracy of signal source localization of motor imagery.

    致謝..................................................I 摘要.................................................II Abstract............................................III 目錄..................................................V 圖目錄...............................................IV 表目錄..............................................XIV 第一章 緒論..........................................1 1.1 研究背景與動機.................................1 1.2 腦電波........................................5 1.2.1 國際10-20腦電波系統....................5 1.2.2 腦電波的時間域分析......................6 1.2.3 腦電波的頻率域分析......................7 1.3 腦電波的特徵擷取...............................9 1.4 研究目的......................................10 1.5 研究架構......................................13 1.6 論文架構......................................14 第二章 文獻探討......................................15 2.1 單筆腦電波訊號處理之文獻與發展概況...............15 2.2 時頻空間分析法應用在腦電波樣本建立之文獻..........17 2.3 同一腦電波資料之文獻...........................21 2.4 文獻回顧整理..................................24 第三章 相關研究方法與腦電波資料集......................25 3.1 腦電波資料集..................................25 3.2 獨立成份分析法.................................27 3.2.1 引言....................................27 3.2.2 獨立成份分析之基本定義與說明..............27 3.2.3 獨立成份分析法應用於腦電波分析............29 3.3 希爾伯特黃轉換................................30 3.4 支持向量機....................................37 第四章 實驗設計與流程.................................41 4.1 腦電波訊號的重建..............................41 4.2 獨立成份分析法應用於四種想像動作的訊號源定位......46 4.3 希爾伯特黃轉換應用於時頻分析....................57 4.3.1三種時頻分析之比較與介紹..................57 4.3.2希爾伯特黃轉換應用於時頻空間遮罩...........61 4.4 腦電波資料的特徵向量建立與分類..................68 4.4.1 時頻空間樣本的前處理....................68 4.4.2 特徵擷取..............................69 4.4.3 資料分類...............................71 第五章 實驗結果與討論.................................73 5.1 腦電波訊號的重建...............................73 5.2 四種想像動作的訊號源定位........................75 5.2.1 實驗結果...............................75 5.2.2 單筆腦電波資料投射到皮質表面圖............76 5.3 四種想像動作分類結果............................78 第六章 結論...........................................80 參考文獻................................................82 附錄 四種想像動作同條性估計圖............................87

    [1]Guest Editors, “Guest editorial the third international
    meeting on brain-computer interface technology:
    making a difference,” IEEE Trans. Rehabil. Eng., vol.
    14, no. 2, pp. 126-127, 2006.
    [2]F. Cincotti, L. Bianchi, G. Birch, C. Guger, J.
    Mellinger, R. Scherer, R. N. Schmidt, O. Y. Suárez, and
    G. Schalk, “BCI meeting 2005—workshop on technology:
    hardware and software,” IEEE Trans. Rehabil. Eng., vol.
    14, no. 2, pp. 128-131, 2006.
    [3]A. Kübler, V. K. Mushahwar, L. R. Hochberg, and J. P.
    Donoghue, “BCI meeting 2005—workshop on clinical
    issues and applications,” IEEE Trans. Rehabil. Eng.,
    vol. 14, no. 2, pp. 131-134, 2006.
    [4]G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J.
    McFarland, and K. R. Müller, “Toward brain-computer
    interfacing,” Cambridge, Mass.: MIT Press, 2007.
    [5]S. G. Mason and G. E. Birch, “A brain-controlled switch
    for asynchronous control applications,” IEEE Trans.
    Biomed. Eng., vol. 47, no. 10, pp. 1297-1307, 2000.
    [6]J. d. R. Millán and J. Mouriño, “Asynchronous BCI and
    local neural classifiers: an overview of the adaptive
    brain interface project,” IEEE Trans. Rehabil. Eng.,
    vol. 11, no. 2, pp. 159-161, 2003.
    [7]A. Kübler, B. Kotchoubey, T. Hinterberger, N. Ghanayim,
    J. Perelmouter, M. Schauer, C. Fritsch, E. Taub, and N.
    Birbaumer, “The thought translation device: a
    neurophysiological approach to communication in total
    motor paralysis,” Experiment Brain Research, vol.124,
    no.2, pp. 223-232, 1999.
    [8]R. Caton, “The Electric Currents of the Brain,”
    British Medical Journal, Vol. 2, pp. 278, 1875.
    [9]H. Berger, “Über das Elektrenkephalogramm des
    Menschen,” European Archives of Psychiatry and Clinical
    Neuroscience, vol. 87, pp. 527-570, 1929.
    [10]H. Jasper, “Report of committee on methods of clinical
    exam in EEG,” Electroencephalogr. Clin.
    Neurophysiol. , vol. 10, pp. 370-375, 1958.
    [11]E. H. Chudler, “Neuroscience for kids,” available at
    the links for on-line courses at the author’s homepage
    at
    http://faculty.washington.edu/chudler/1020.html, 1996-
    2008.
    [12]L. Hu, B. H. Jansen, and N. N. Boutros, “Is P50 an
    epiphenomenon?” Proc. of 27st Annual International
    Conference of the IEEE EMBS, pp. 1166-1169, 2005.
    [13]S. Sanei and J. A. Chambers, “EEG Signal Processing,”
    John Wiley & Sons, Ltd, 2007.
    [14]J. Bhattacharya and H. Petsche, “Phase Synchrony
    analysis of EEG during music perception reveals
    changes in functional connectivity due to musical
    expertise,” Signal Processing, Vol. 85, pp. 2161-2177,
    2005.
    [15]A. R. Haig, E. Gordon, G. Roger, and J.
    Anderson, “Classification of single-trial ERP sub-
    types: application of globally optimal vector
    quantization using simulated annealing,”
    Electroencephalogr. Clin. Neurophysiol., vol. 94, pp.
    288-297, 1995.
    [16]H. Yabe, F. Satio, and Y. Fukushima, “Median method
    for detecting endogenous event-related brain
    potentials,” Electroencephalogr. Clin. Neurophysio.,
    vol. 87, pp. 403-407, 1993.
    [17]D. G. Childers, P. A. Bloom, A. A. Arroyo, S. E.
    Roucos, I. S. Fischler, T. A. Apaopan, and N. W.
    Perry, “Classification of cortical responses using
    features from single EEG records,” IEEE Trans. Biomed.
    Eng., vol. BME-29, 1982.
    [18]T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E.
    Courchesne, and T. J. Sejnowski, “Analysis and
    visualization of single-trial event-related
    potential,” Hum. Brain Mapp., vol. 14, Issue 3, pp.
    166-185, 2001.
    [19]J. Kalcher and G. Pfurtscheller, “Discrimination
    between phase-locked and non-phase-locked event-related
    EEG activity,” Electroencephalogr. Clin.
    Neurophysiol., vol. 94, pp. 381-384, 1995.
    [20]H. Ramoser, J. M. Gerking, and G.
    Pfurtscheller, “Optimal spatial filtering of single
    trial EEG during imagined hand movement,” IEEE Trans.
    Rehab. Eng., vol. 8, pp. 441-446, 2000.
    [21]B. Obermaier, C. Guger, C. Neuper, and G.
    Pfurtscheller, “Hidden Markov models for online
    classification of single trial EEG data,” Pattern
    Recogn. Lett., vol.22, pp. 1299-1309, 2001.
    [22]S. Lemm, B. Blankertz, G. Curio, and K. R.
    Müller, “Spatio-spectral filters for improving the
    classification of single trial EEG,” IEEE Trans.
    Biomed. Eng., vol. 52, pp. 1541-1548, 2005.
    [23]G. Pfurtsheller, C. Brunner, A. Schlögl, and F.H. Lopes
    da Silva, “Mu rhythm (de)synchronization and EEG
    single-trial classification of different motor imagery
    tasks,” NeuroImage, vol. 31, pp. 153-159, 2006.
    [24]K. R. Müller, M. Tangermann, G. Dornhege, M. Krauledat,
    G. Curio, and B. Blankertz, “Machine learning for real-
    time single-trial EEG-analysis: From brain-computer
    interfacing to mental state monitoring,” Journal of
    Neuroscience Methods, vol. 167, pp. 82-90, 2008.
    [25]J. Britton, B. W. Jervis, and R. A.
    Grünewald, “Extracting single trial event related
    potentials,” IEE Proc. Sci. Meas. Technol., vol. 147,
    pp. 382-388, 2000.
    [26]S. Makeig, A. J. Bell, T. P. Jung, and T. J.
    Sejnowski, “Independent component analysis of
    electroencephalographic data,” Adv. Neural Inf.
    Process. Syst., vol. 8, pp. 145-151, 1996.
    [27]T. P. Jung, C. Humphries, T. W. Lee, S. Makeig, M. J.
    Mckeown V. Iragui, and T. J. Sejnowski, “Extended ICA
    removes artifacts from electroencephalographic data,”
    Adv. Neural Inf. Proc. Syst., vol.10, pp.894-900, 1998.
    [28]T. Demiralp, J. Yordanova, V.Kolev, A. Ademoglu, M.
    Devrim, and V. J. Samar, “Time-frequency analysis of
    single-sweep event-related potentials by means of fast
    wavelet transform,” Brain and Language, vol. 66, pp.
    129-145, 1999.
    [29]T. Wang, J. Deng, B. He, “Classifying EEG-based motor
    imagery tasks by means of time-frequency synthesized
    spatial patterns,” Clin. Neurophysiol., vol. 115, pp.
    2744-2753, 2004.
    [30]N. Yamawaki, C. Wilke, and Z. Liu, “An enhanced time-
    frequency-spatial approach for motor imagery
    classification,” IEEE Trans. Neural Syst. And Rehab.
    Eng., vol. 14, pp. 250-254, 2006.
    [31]A. Delorme and S. Makeig, “EEGLAB: an open source
    toolbox for analysis of single-trial EEG dynamics
    including independent component analysis,” Journal of
    Neuroscience Methods, vol. 134, pp. 9-21, 2004.
    [32]N. E. Huang, Z. Shen, S. R. Long, M. Wu, H. Zheng, C.
    Yen, C. C. Tung, and H. H. Liu, “The empirical mode
    decomposition and the Hilbert spectrum for non-linear
    and non-stationary time series analysis,” Proc. of the
    Royal Society of London Series A—Math. Physic. And
    Eng. Science, vol. 454, pp. 903-995, 1998.
    [33]Z. D. Xiang, X. P. Wu, and X. J. Guo, “The EEG signal
    preprocessing based on empirical mode decomposition,”
    The 2nd International Conference on ICBBE, pp. 2131-
    2134, 2008.
    [34]M. Schwartz, W. Bennett, S. Stein, and W.
    R., “Communications systems and techniques,” New
    York: McGraw-Hill, 1966.
    [35]P. Jahankhani, V. Kodogiannis ,and K. Revett, “EEG
    signal classification using wavelet feature extraction
    and neural networks,” IEEE 2006 International
    Symposium on Modern Computing, pp. 52-57, 2006.
    [36]A. Schlögl, F. Lee, H. Bischof, and G.
    Pfurtscheller, “Characterization of four-class motor
    imagery EEG data for the BCI competition 2005,”
    Journal of Neural Engineering, vol. 51, pp. L14-L22,
    2005.
    [37]B. Blankertz, K. R. Müller, D. J. Krusienski, G.
    Schalk, J. R. Wolpaw, A. Schlögl, G. Pfurtsheller, J.
    R. Millán, M. Schröder, and N. Birbaumer, “The BCI
    competition III: alternative approaches to actual BCI
    problems,” IEEE Trans. Neural Syst. And Rehab. Eng.,
    vol. 14, pp. 100-107, 2006.
    [38]B. Hjorth, “An on-line transformation of EEG scalp
    potentials into orthogonal source deviation,”
    Electroencephalogr. Clin. Neurophysiol., vol. 39, pp.
    526-530, 1975.
    [39]T. Wang, J. Deng, and B. He, “Classifying EEG-based
    motor imagery tasks by means of time-frequency
    synthesized spatial patterns,” Clin. Neurophysiol.,
    vol. 115, pp. 2744-2753, 2004.
    [40]C. C. Chen, J. C. Hsieh, Y. Z. Wu, P. L. Lee, S. S.
    Chen, D. M. Niddam, T. C. Yeh, and Y. T. Wu, “Mutual-
    information-based approach for neural connectivity
    during self-paced finger lifting task,” Human Brain
    Mapping, vol. 29, pp. 265-280, 2008.
    [41]Public editors, “Window function,” available at the
    links at Wikipedia, the free encyclopedia at
    http://en.wikipedia.org/wiki/Window_function .
    [42]F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B.
    Arnaldi, “A review of classification algorithms for
    EEG-based brain computer interface,” Journal of Neural
    Engineering, vol. 4, pp. R1-R13, 2007.
    [43]S. Theodoridis and K. Koutroumbas,“Pattern
    Recognition,”ACADEMIC PRESS, second edition, 2003.
    [44]C. C. Chang and C. J. Lin, “LIBSVM: a library for
    support vector machines,” Software available at
    http://www.csie.ntu.edu.tw/~cjlin/libsvm , 2001.

    下載圖示
    QR CODE