研究生: |
簡爾君 Jian, Er-Jiun |
---|---|
論文名稱: |
3D建模與列印教學應用於STEM取向準工程課程對學習成效之影響 The Effects of 3D-CAD and 3D Printing Applications of STEM-based Pre-engineering Curriculum on Students’ Learning Performance |
指導教授: |
張玉山
Chang, Yu-Shan |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 3D建模 、3D列印 、STEM 、準工程課程 、學習成效 |
英文關鍵詞: | 3D-CAD, 3D printing, STEM, pre-engineering, learning performance |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DTAHRD.002.2018.F06 |
論文種類: | 學術論文 |
相關次數: | 點閱:225 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討3D建模與列印應用於STEM取向準工程課程對學習成效之影響。本研究採用準實驗研究之不等組前後測實驗設計;實驗對象為某公立高中一年級的145名學生,隨機將學生分派為實驗組與控制組進行課程實驗。本研究之課程單元名稱為二氧化碳賽車,分別於實驗組進行3D建模與列印,控制組進行傳統手作。本研究蒐集活動前的成績作為前測分數,活動後的設計與製作成績為後測分數,並以科技態度量表、學習單以及產品創意結果評量表(rubric)來蒐集相關的資料。
本研究的主要結論如下:1. 3D建模與列印應用對學習紀錄之總結測驗具有正向影響。2. 3D建模與列印對科技態度無顯著影響。3. 3D建模與列印對創意結果之新穎性、精緻性及整體有正向影響。
最後,本研究根據研究結果,針對3D建模與列印應用於STEM取向準工程課程以及後續相關研究提供建議。
The purpose of this study was to investigate the effects of three-dimensional computer-aided design(3D-CAD) and 3D printing of STEM-based pre-engineering curriculum on students’ learning performance. A nonequivalent pretest-posttest quasi-experimental design was used in this research.
There were 145 10th grade students of public senior high school participating in this study. The students were randomly assigned to the experimental group and the control group. The course unit named Carbon Dioxide Dragster Race was conducted in researcher. The experimental group was taught using 3D-CAD and 3D printing, while the control group was taught using the traditional handwork. Participant students’ learning performance before and after the experiment were evaluated. Attitudes towards Technology Scale was used to collect data of students’ attitudes towards technology. Additionally, creative products rubric and learning sheet were used to collect relevant information.
The findings of the research were: 1. 3D-CAD and 3D printing applications had a positive effect in students’ summary assessment. 2. 3D-CAD and 3D printing applications had no significant difference in attitudes towards technology. 3. 3D-CAD and 3D printing applications had positive effects on novelty, sophistication, and total aspect.
According to the results of this research, some recommendations were provided for 3D-CAD and 3D printing of STEM-based pre-engineering curriculum and future studies.
一、中文文獻
行政院(2014)。行政院第3413次院會決議。取自http://www.ey.gov.tw/news_Content.aspx?n=4F2A6F26A44C68AC&s=98913E95CB7C3D33
李隆盛(1998)。高中實施「工程科技」的可能性。中學工藝教育月刊,31(5),2-7。
李隆盛、吳正己、游光昭、周麗瑞、葉家棟、盧秋珍、沈章平(2013)。十二年國民基本教育生活與科技領域綱要內容之前導研究。國家教育研究院「十二年國民基本教育領域綱要內容前導研究」整合型研究報告(編號: NAER-102-06-A-1-02-09-1-18),未出版。
林坤誼(2001)。高中開設準工程取向科技教育課程之研究。國立臺灣師範大學工業科技教育學系碩士論文,未出版,台北市。
林營宗(2013)。3D 列印技術改變工業未來。三聯技術,87 (1),24-26。
林榮泰、Kreifeldt, J. G. (2014)。請勿觸摸 Do Not Touch-設計科技與人文藝術的對話。新北市:林榮泰。
邱貴發(1992)。電腦輔助教學成效探討。視聽教育,33(5),11-18。
范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用。國立臺灣師範大學工業科技教育學系博士論文,未出版,台北市。
徐毅穎(2012)。高中生科技素養與科技態度相關之研究。國立臺灣師範大學工業科技教育學系博士論文,未出版,台北市。
黃子榕、林坤誼(2014)。職前教師於STEM實作課程的知識整合行為研究。科技與人力教育季刊,1(1),18-39。
張春興、楊國樞(1998)。心理學(15版)。台北:三民。
張玉山(2003)。虛擬團隊之創造力研究-以師院勞作課程為例。國立台灣師範大學工業教育研究所博士論文。全國博碩士論文資訊網,台北市。
張玉山、陳思貽(2013)。雲端學習對學生創意表現之影響。2013第二屆工程與科技教育學術研討會,台北市。
張世慧(2003)。創造力-理論、技術/技法與培育。台北市:張世慧。
教育部(2003)。創造力教育白皮書。台北:教育部
游光昭、韓豐年、徐毅穎、林坤誼(2005)。國中生活科技態度量表之發展。高雄師大學報,19,69-83。
楊政穎、吳明勳、張晨鋒 (2012)。利用快速模具技術製作壓電式無閥門微泵浦之可行性探討。工程應用技術學刊,1(2),71-86。
經建會(2013)。3D列印商機夯,跨界應用加值強。取自http://www.ndc.gov.tw/
羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活科技領域之研究。人文社會科學研究,3(3),42-66。
二、外文文獻
Aladé, F., Lauricella, A. R., Beaudoin-Ryan, L., & Wartella, E. (2016). Measuring with murray: Touchscreen technology and preschoolers' STEM learning.Computers in Human Behavior, 62, 433-441.
Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379.
Basalyga, S. (2003). Student interest in engineering is on decline. DJC Oregon, Retrieved from
http://djcoregon.com/news/2003/06/11/student-interest-in-engineering-is-on-decline/
Barry, N. B. (2014). The ITEEA 6E learning by DeSIGNTM model. Technology and Engineering Teacher, 73(6), 14-19.
Berry, R. Q., Reed, P. A., Ritz, J. M., Lin, C. Y., Hsiung, S., & Frazier, W. (2004). Stem initiatives: Stimulating students to improve science and mathematics achievement. The Technology Teacher, 64 (4), 23-30.
Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. Journal of Creative Behavior, 15, 158-178.
Brans, K. (2013). 3D printing, a maturing technology. IFAC Proceedings, 46, 468-472.
Brown, Q., & Burge, J. D. (2014). MOTIVATE: Bringing out the fun with 3D printing and E-textiles for middleand high-school girls. In Proceedings of the 121st ASEE Annual Conference & Exposition, IN: Indianapolis, USA.
Buehler, E., Kane, S. K., & Hurst, A. (2014). ABC and 3D: Opportunities and obstacles to 3D printing in special education environments. In Proceedings of the 16th international ACM SIGACCESS conference on Computers & accessibility (pp. 107-114). New York, NY: ACM.
Bybee, R., Taylor, J., Gardner, A., Van Scotter, P., Carson Powell, J., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Colorado Springs: BSCS.
Chang, Y. S., Chien, Y. H., Lin, H. C., Chen, M. Y., & Hsieh, H. H. (2016). Effects of 3D CAD applications on the design creativity of students with different representational abilities. Computers in Human Behavior, 65, 107-113.
Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Beverly Hills, CA: Sage.
Dewey, J. (1938). Experience and education. NY: Collier Books.
Eisenberg, M. (2013). 3D printing for children: What to build next? International Journal of Child-Computer Interaction, 1(1), 7-13.
Guilford, J. P. (1958). Creative intelligence in education. Los Angeles: Los Angeles County Office of Superintendent of Schools.
Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing engineering design into high school STEM courses. Retrieved from http://ncete.org/flash/pdfs/Infusing_Engineering_Hynes.pdf
Horowitz, S. S., & Schultz, P. H. (2014). Printing space: Using 3D printing of digital terrain models in geosciences education and research. Journal of Geoscience Education, 62 (1), 138-145.
Huang, C. T., & Lin, C. Y. (2016). From 3D modeling to 3D printing: Development of a differentiated spatial ability teaching model. Telematics and Informatics, 34(2), 604-613.
Jianfeng, B., Hu, L., Li, Y., Tian, Z., Xie, L., Wang, L., & Xie, H. (2013). The progress of CDIO engineering education reform in several China universities: A review. Procedia Soc. Procedia - Social and Behavioral Sciences, 93, 381-385.
Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
Kostakis, V., Niaros, V., & Giotitsas, C. (2014). Open source 3D printing as a means of learning: An educational experiment in two high schools in Greece. Telematics and Informatics, 32, 118-128.
Kurtuluş, A. (2013). The effects of web-based interactive virtual tours on the development of prospective mathematics teachers’ spatial skills. Computers & Education, 63, 141–150.
Lantz, H. B. (2009). Science, technology, rngineering, and mathematics (STEM) education what form? What function? Retrieved from https://dornsife.usc.edu/assets/sites/1/docs/jep/STEMEducationArticle.pdf
Lewis, T. (2004). A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education, 16 (1), 21-39.
Liu, Y. F., Xu, L. W., Zhu, H. Y., & Liu, S. S. Y. (2014). Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomedical Engineering Online, 13(63), 1-15.
Lipson, H., & Kurman, M. (2013). Fabricated: The new world of 3D printing. Indianapolis, Indiana: John Wiley and Sons, Inc.
Low, Z. X., Chua, Y. T., Ray, B. M., Mattia, D., Metcalfe, I. S., & Patterson D. A.(2016). Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 523, 596-613.
McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anatomical Sciences Education, 7(6), 479-86.
McPeck, J. E. (1990). Teaching critical thinking. Routledge, NY: Chapman and Hall.
Markillie, P. (2012). A third industrial revolution. Retrieved from http://www.economist.com/node/21552901.
Merrill, C., Custer, R. L., Daugherty, J., Westrick, M., & Zeng, Y. (2009). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20 (1), 48-64.
Norris, S. P. (1985). Synthesis of research on critical thinking. Educational Leadership, 42 (8), 40-45.
NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
Onsman, A. (2016). Assessing creativity in a ‘New Generation’ architecture degree. Thinking Skills and Creativity, 19, 210-218.
Papert, S. (1980). Teaching children thinking. In: Taylor, R.P. (Ed.),The Computer in the school: Tutor, Tutee, Tool. New York: Teachers College Press.
Paul, R.W. (1990). Critical thinking: What, why, and how. In A. J. A. Binker (Ed.), Critical thinking: What every person needs to survive in a rapidly changing world. Rohnert Park, CA: Center for Critical Thinking and Moral Critique, Sonoma State University.
Petrina, S. (2007). Advanced teaching methods for the technology classroom. Hershey, PA: Information Science Publishing.
Pinelli, T., & Haynie III, W. (2010).A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21 (2), 52-68.
Raat, J. H., & de Vries, M. (1985). What do 13-Year old pupils think about technology? The conception of and the attitude towards technology of 13-year old girls and boys. Eindhoven University of Technology, Netherlands. Retrieved from ERIC database. (ED 262998)
Rivera-Chang, J. (2015). Case study: Use of online tools in the classroom and their impact on industrial design pedagogy. Procedia Manufacturing, 3, 2275-2280.
Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. In International Technology and Engineering Educators Association (ITEEA) (Ed.), The overlooked STEM imperatives: Technology and engineering (pp. 4-9). Reston, VA: ITEEA, USA.
Scalfani, V. F., & Vaid, T. P. (2014). 3D printed molecules and extended solid models for teaching symmetry and point groups. Journal of Chemical Education, 92 (8), 1174-1180.
Sozcua, O. F., Taskına, E., Ipeka, I., Simsekb, M., & Kınay, H. (2015). Investigating Turkey high school graduates’ attitudes towards technology. Procedia - Social and Behavioral Sciences, 191, 1416-1422.
Thompson, J., & Fitzgerald, M. (2006). Super mileage challenge: Combining education and fun! The Technology Teacher, 66(1), 31-33.
Toulmin, C., & Groome, M. (2007). Building a science, technology, engineering, and math agenda. Washington, DC: National Governors Association.
Verner, I., & Merksamer, A. (2015). Digital design and 3D printing in technology teacher education. Procedia CIRP. 36, 182-186.
Yarar, İ., & Karabacak, K. (2015). 8th Grade students’ attitude towards technology. Procedia - Social and Behavioral Sciences, 174, 2051-2060.