研究生: |
黃瀚元 Huang, Han-Yuan |
---|---|
論文名稱: |
鈷鈀合金在氫化效應下導致可逆性長程有序磁排列 Hydrogenation induced reversible long-range magnetic ordering in CoPd alloy thin films |
指導教授: |
林文欽
Lin, Wen-Chin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 鈀的氫化效應 、鈷鈀合金 、磁光柯爾效應 |
英文關鍵詞: | palladium hydrogenation effect, CoPd alloy, MOKE |
論文種類: | 學術論文 |
相關次數: | 點閱:115 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同比例及厚度下的鈷鈀合金長在藍寶石基板(Al_2 O_3 (0001))上,觀察樣品氫化效應對磁性的影響。
樣品皆在超高真空系統下(〖10〗^(-8) torr)利用熱蒸鍍原理將鈷及鈀兩金屬對鍍形成合金,鍍完成後用歐傑能譜儀(Auger Spectrum)測量其成分比例、用磁光柯爾效應(MOKE)測量氫氣吸附後的磁光特性改變、原子力顯微鏡(AFM)觀測表面結構對於氫氣吸附所改變的磁性行為,接著在低溫下用超導量子干涉震動磁量儀測量磁的特性。
鈀吸附氫氣後會變成氫化鈀,隨著曝的氫氣量愈來愈多,氫化鈀晶格常數從原本的 3.89 Å (α-phase)上升至 4.02 Å(β-phase)。樣品固定Pd的鍍量且Pd比例為33 %時,曝完氫氣後其磁光特性並沒有明顯變化,隨著鈀金屬比例升高至61 % 時,曝完氫氣後,樣品磁滯曲線的矯頑力、殘磁比及光訊號皆會改變。將鈀的比例提升至 76 & 及 86 %時,矯頑力上升10倍;磁滯曲線的飽和磁化量及殘磁的比值(squareness = M_r/M_s )也在曝完40 mbar氫氣2-3秒內從10% 上升至100%。這是因為當鈀的比例變高而磁性金屬鈷的比例下降時,合金的磁矩排列從原本的長程無序狀態下,氫化後變成長程有序排列的稀磁性金屬特性。固定Pd比例(61 %)下改變樣品厚度,發現20奈米厚度的樣品,其吸附氫氣後的磁光效應改變比10奈米來的明顯。除此之外,當氫氣被機械幫浦抽出時,樣品會在2~3秒內從β-phase回到α-phase,且該反應是可以被重複的。
用原子力顯微鏡觀察 Co_14 Pd_86 樣品的表面形貌,其表面上有許多直徑約100奈米的團簇,團簇中間充滿著直徑約20奈米的顆粒,這些顆粒除了可以增加樣品接收氫氣的表面積外,還可以形成不同的截面以增加氫氣吸收的效率。
The hydrogenation effect on the various thickness Co_(1-x) Pd_x/Al_2 O_3 (0001) films investigated the magnetic and reversible properties.
The concentration of Co and Pd was determined by Auger electron spectrum. The magnetic properties were measured using Magneto-Optical Kerr Effect (MOKE) and Superconducting Quantum Interference Device Vibrating Sample Magnetometer (SQUID). The morphology was measured using AFM ex-situ.
Palladium were transferred into Palladium hydride (PdH_x) and the lattice constant was expanded during hydrogen adsorption and absorption process. The hydrogenation effect were unobvious in Co-rich (Co_67 Pd_33) sample. When the concentration of Pd was increased to 86 %, the magnetic coercivity was enhanced 10 times. Moreover, the squareness of hysteresis loop was also enhanced from 10 % to 100 % after exposed 40 mbar of hydrogen gas within 2-3 sec. This behavior might cause from dilute magnetic material with long-range magnetic ordering. Besides, the efficiency of hydrogenation effect was influenced by different thickness of Co_39 Pd_61 alloy. After removed the hydrogen atoms by mechanical pump, the shape of hysteresis loops returned from β-phase to α-phas during 2-3 sec. This behavior means that the hydrogenation process in palladium is reversible.
Atomic force microscopy (AFM) figure shows the Co_0.14 Pd_0.86 alloy’s morphology, which has many 100 nm diameter nano-clusters and mounts of 20 nm nano-dots at nearby clusters can not only enhance the interaction surface but also create the different surface cross section. Both of properties can improve the hydrogenation effect in CoPd alloy.
[1] D. Sander, W. Pan, S. Ouazi, J. Kirschner, W. Meyer, M. Krause, S.M€uller, L.
Hammer, and K. Heinz, Phys. Rev. Lett. 93, 247203 (2004).
[2] B. Busiakiewicz and I. Zasada, Phys. Rev. B 78, 165412 (2008).
[3] C. C. Kuo, W. C. Lin, S. F. Chuang, and M.-T. Lin, Surf. Sci. 576, 76(2005).
[4] D. Wang, K.-Y. Lee, S. Luo, and T. B. Flanagan, J. Alloys Compd. 252,209 (1997).
[5] L. L. Jewell and B. H. Davis, Appl. Catal., A 310, 1–15 (2006).
[6] Z. Zhao, M. A. Carpenter, H. Xia, and D. Welch, Sens. Actuators, B 113,532–538(2006).
[7] F. J. Ibanez and F. P. Zamborini, J. Am. Chem. Soc. 130, 622–633(2008).
[8] Wen-Chin Lin, Chiao-Sung Chi, Tsung-Ying Ho, Cheng-Jui Tsai, 531,pp487 ,Thin Solid Films 531 (2013).
[9] Wen-Chin Lin, Cheng-Jui Tsai, Bo-Yao Wang, Chao-Hung Kao, and Way-Faung
Pong, Appl. Phys. Lett. 102, 252404 (2013).
[10] Wen-Chin Lin, Cheng-Jui Tsai, Xin-Ming Liu and Adekunle O. Adeyeye J. Appl. Phys. 116, 073904 (2014).
[11] NTD Resource Center.
[12] Manchester, F. D.; San-Martin, A.; Pitre, J. M. Journal of Phase Equilibria
15: 62(1994).
[13] Brian D. Adams, Aicheng Chen Department of Chemistry, Lakehead University, 955
(2011).
[14] W.M. Bartczak, J. Stawowska Struct Chem, 15, p. 447 (2004).
[15] W. Grochala, P. P. Edwards. Chem. Rev. 104 (3), 1283–1316 (2004).
[16] W. Dong, V. Ledentu, P. Sautet, G. Kresse, and J. Hafner, Surf. Sci. 377, 56 (1997).
[17] T.B. Flanagan, W.A. Oates Annu Rev Mater Sci, 21, p. 269 (1991).
[18] Satoshi Ohno, Markus Wilde, and Katsuyuki Fukutani The Journal of Chemical
Physics 140, 134705 (2014).
[19] K. Saravanan, et al.RSC Advances 5, 19014–19019 (2015).
[20] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801–925 (1986).
[21] Uwe Muschiol, Pia K. Schmidt, Klaus Christmann, Surface Science 395,182 204 (1998).
[22] Satoshi Ohno, Markus Wilde, and Katsuyuki Fukutani, the Journal of Chemical
Physics 140, 134705 (2014)