研究生: |
蔡晉民 |
---|---|
論文名稱: |
利用二氧化鈦奈米桿改善鈣鈦礦晶體薄膜增益太陽能電池效率 TiO2 Nanorod Improve Morphology of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cell |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 太陽能電池 、有機-無機鈣鈦礦 、二氧化鈦奈米桿 |
英文關鍵詞: | Solar cell, Organic-inorganic perovskite, TiO2 nanorod |
論文種類: | 學術論文 |
相關次數: | 點閱:645 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來有機-無機鈣鈦礦太陽能電池領域蓬勃發展、備受矚目,由於其極高吸收系數與極佳的光電轉換效率,因此能降低太陽能電池薄膜厚度並達到極佳之太陽能元件效率。
目前,已有各種鈣鈦礦太陽能電池結構被發展,許多電子傳輸層與電洞傳輸層也相繼被替換,不過高效率結構主體仍以高溫燒結之二氧化太光陽極並沉積甲胺鉛碘(CH3NH3PbI3)作吸光層為主。然而,這種結構由於二氧化鈦層需要極高的燒結溫度(~500oC),因此將會提高元件製作成本與複雜度,若將二氧化鈦層移除,發展平面異質接面結構,礙於CH3NH3PbI3本身擴散長度(~100nm)之限制與溶液沉積法所得之鈣鈦礦晶體表面形貌不佳,造成目前元件效率無法提升。
本論文利用合成出低溫之二氧化鈦奈米桿,藉由添加入CH3NH3PbI3系統內,我們發現二氧化鈦在系統內可幫助載子分離、並且當二碘化鉛與甲胺碘反應後,鈣鈦礦晶體表面的形貌改善,使得晶體彼此聯結性增加,這些原因有助於元件效率的提升,並且在此製程裡我們成功製作出一種新型態,簡單、低溫、低成本之混摻(Hybrid)結構有機-無機鈣鈦礦太陽能電池,並成功將元件效率提升至8%。
Inorganic-organic perovskite solar cells are significant technology, promising cost-competitive solar power by cheap material and fabrication costs as compared to established conventional silicon solar cell. Mesoscopic structure heterojunction solar cell showed higher efficiency devices than other kinds of structure solar cells. But, they have serious drawback such as needed high annealing temperature for forming well crystalized TiO2, which makes more complicate process of fabrication and flexible less substrates.
To overcome this, researchers move to planar heterojunction perovskite solar cells. However, they also have the problems of limited diffusion length and morphology hard to control by using solution processed deposition. The morphology is wisely controlled by varying processing conditions, and demonstrated that the highest photocurrents achievable only with the highest perovskite surface exposures.
Here, we effectively synthesized well-crystalline TiO2 nanorod by low temperature sol gel process, followed by ligand exchange method by using acrylic acid. In order to fabricate the perovskite film, we also synthesized CH3NH3I to gain the high purity powder, which was impregnated with TiO2 nanorod for fabrication of a new structure that is hybrid heterojunction perovskite solar cell system.
With improved solution based film formation shows higher efficiency of Jsc(Short-circuit current) and better FF(Fill factor). It may be due to the TiO2 nanorod provides more interfaces for the carrier charge separation and morphological changes of PbI2 in TiO2 nanorod such as pin-holes. Further, improved the morphology of perovskite surface occurred by the formation of better connection surface of perovskite crystalline because of more nucleation spots available on CH3NH3I for react with PbI2. Under optimized condition, the efficiency of device was raised to 8% which is better than other solution process planar-heterojunciton solar cell.
第七章 參考文獻
1. Griggs, D.J. and M. Noguer, Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Weather, 2002. 57(8): p. 267-269.
2. German Advisory Council on Global Change, 2003.
3. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
4. Bhalla, A.S., R. Guo, and R. Roy, The perovskite structure – a review of its role in ceramic science and technology. Material Research Innovations, 2000. 4(1): p. 3-26.
5. Liu, X., R. Hong, and C. Tian, Tolerance factor and the stability discussion of ABO3-type ilmenite. Journal of Materials Science: Materials in Electronics, 2009. 20(4): p. 323-327.
6. Cheng, Z. and J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010. 12(10): p. 2646-2662.
7. Mitzi, D.B., Templating and structural engineering in organic-inorganic perovskites. Journal of the Chemical Society, Dalton Transactions, 2001(1): p. 1-12.
8. Era, M., et al., Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Applied Physics Letters, 1994. 65(6): p. 676-678.
9. Pradeesh, K., J.J. Baumberg, and G.V. Prakash, Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Optics Express, 2009. 17(24): p. 22171-22178.
10. Uehara, M., et al., Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature, 1999. 399(6736): p. 560-563.
11. He, T., et al., Superconductivity in the non-oxide perovskite MgCNi3. Nature, 2001. 411(6833): p. 54-56.
12. Cohen, R.E., Origin of ferroelectricity in perovskite oxides. Nature, 1992. 358(6382): p. 136-138.
13. Kudo, A., H. Kato, and S. Nakagawa, Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity. The Journal of Physical Chemistry B, 1999. 104(3): p. 571-575.
14. Xu, X., et al., A red metallic oxide photocatalyst. Nat Mater, 2012. 11(7): p. 595-598.
15. Mitzi, D.B., Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chemistry of Materials, 1996. 8(3): p. 791-800.
16. Takeoka, Y., et al., Incorporation of conjugated polydiacetylene systems into organic-inorganic quantum-well structures. Chemical Communications, 2001(24): p. 2592-2593.
17. Mitzi, D.B., Solution-processed inorganic semiconductors. Journal of Materials Chemistry, 2004. 14(15): p. 2355-2365.
18. Koutselas, I., et al., Some Unconventional Organic−Inorganic Hybrid Low-Dimensional Semiconductors and Related Light-Emitting Devices. The Journal of Physical Chemistry C, 2011. 115(17): p. 8475-8483.
19. Brivio, F., A.B. Walker, and A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Materials, 2013. 1(4): p. -.
20. Liang, K., D.B. Mitzi, and M.T. Prikas, Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials, 1998. 10(1): p. 403-411.
21. Mitzi, D.B., Thin-Film Deposition of Organic−Inorganic Hybrid Materials. Chemistry of Materials, 2001. 13(10): p. 3283-3298.
22. Chondroudis, K., D.B. Mitzi, and P. Brock, Effect of Thermal Annealing on the Optical and Morphological Properties of (AETH)PbX4 (X = Br, I) Perovskite Films Prepared Using Single Source Thermal Ablation. Chemistry of Materials, 1999. 12(1): p. 169-175.
23. Era, M., et al., Self-Organized Growth of PbI-Based Layered Perovskite Quantum Well by Dual-Source Vapor Deposition. Chemistry of Materials, 1997. 9(1): p. 8-10.
24. Mitzi, D.B., M.T. Prikas, and K. Chondroudis, Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique. Chemistry of Materials, 1999. 11(3): p. 542-544.
25. Xiang, H.J., et al., Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach. Physical Review Letters, 2013. 110(11): p. 118702.
26. Britt, J. and C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993. 62(22): p. 2851-2852.
27. Contreras, M.A., et al., Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics: Research and Applications, 1999. 7(4): p. 311-316.
28. Guo, Q., H.W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. Journal of the American Chemical Society, 2009. 131(33): p. 11672-11673.
29. Green, M.A., et al., Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 2012. 20(5): p. 606-614.
30. Brabec, C.J., et al., Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials, 2010. 22(34): p. 3839-3856.
31. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
32. Yella, A., et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011. 334(6056): p. 629-634.
33. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
34. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
35. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2423-2429.
36. Service, R.F., Turning Up the Light. Science, 2013. 342(6160): p. 794-797.
37. Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solar cells. Nat Photon, 2012. 6(3): p. 162-169.
38. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
39. Niu, G., et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014. 2(3): p. 705-710.
40. Frost, J.M., et al., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 2014. 14(5): p. 2584-2590.
41. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2012. 2.
42. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
43. Bach, U., et al., Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American Chemical Society, 1999. 121(32): p. 7445-7446.
44. Hardin, B.E., et al., Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nat Photon, 2009. 3(7): p. 406-411.
45. Snaith, H.J., et al., Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology, 2008. 19(42): p. 424003.
46. Dharani, S., et al., High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 2014. 6(3): p. 1675-1679.
47. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
48. Heo, J.H., et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon, 2013. 7(6): p. 486-491.
49. Noh, J.H., et al., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 2013. 13(4): p. 1764-1769.
50. Im, J.-H., et al., Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, 2012. 7(1): p. 1-7.
51. Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
52. Pang, S., et al., NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014. 26(3): p. 1485-1491.
53. Hao, F., et al., Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon, 2014. 8(6): p. 489-494.
54. Abrusci, A., et al., High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Letters, 2013. 13(7): p. 3124-3128.
55. Christians, J.A., R.C.M. Fung, and P.V. Kamat, An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society, 2013. 136(2): p. 758-764.
56. Kumar, M.H., et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 2013. 49(94): p. 11089-11091.
57. Kim, H.-S., et al., High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Letters, 2013. 13(6): p. 2412-2417.
58. Bi, D., et al., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013. 3(41): p. 18762-18766.
59. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
60. Docampo, P., et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013. 4.
61. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
62. Jeng, J.-Y., et al., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 2013. 25(27): p. 3727-3732.
63. Chiang, Y.-F., et al., High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. Physical Chemistry Chemical Physics, 2014. 16(13): p. 6033-6040.
64. Cai, B., et al., High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science, 2013. 6(5): p. 1480-1485.
65. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
66. Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014. 7(1): p. 399-407.
67. Eperon, G.E., et al., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
68. Liang, P.-W., et al., Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials, 2014: p. n/a-n/a.
69. Cozzoli, P.D., A. Kornowski, and H. Weller, Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods. Journal of the American Chemical Society, 2003. 125(47): p. 14539-14548.
70. Vo, D.Q., E.-J. Kim, and S. Kim, Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids. Journal of Colloid and Interface Science, 2009. 337(1): p. 75-80.
71. Lin, Y.-Y., et al., Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009. 131(10): p. 3644-3649.
72. Pillai, S.C., et al., Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst. The Journal of Physical Chemistry C, 2007. 111(4): p. 1605-1611.
73. Chang, C.-H., et al., Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2nanorod bulk heterojunction solar cells. Journal of Materials Chemistry, 2008. 18(19): p. 2201-2207.
74. Kim, H.-S., S.H. Im, and N.-G. Park, Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C, 2014. 118(11): p. 5615-5625.
75. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.