簡易檢索 / 詳目顯示

研究生: 張友維
Chang, Yu-Wei
論文名稱: 條紋投影三維取像與校正及其360度建模之研究
A Study on 360-degree Surface Reconstruction and Calibration for Fringe Projection Profilometry
指導教授: 鄭超仁
Cheng, Chau-Jern
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 62
中文關鍵詞: 條紋投影相位移結構光三維量測深度校正相機校正立體建模
英文關鍵詞: Fringe Projection Profilometry, Phase Shifting, Structure Light, 3D Measurement, Depth Calibration, Camera Calibration, 3D Profile Reconstruction
DOI URL: https://doi.org/10.6345/NTNU202203952
論文種類: 學術論文
相關次數: 點閱:158下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討條紋投影量測技術(Fringe Projection Profilometry)及其重建資訊的校正,以達到建立真實完整三維模型的目的。本文從討論條紋投影之應用領域作為出發,接著探討系統理論上之運作方式,依序介紹三角重建理論、弦波條紋相位擷取與相位展開。而隨著理論上與實際應用之差異性引入校正程序之介紹,從縱向深度校正開始,以多項式擬合方式建立「相位-縱深關係式」,將之應用於條紋相位提升深度量測精準度,接著使用相機校正的方式建構量測系統之立體座標空間,並將拍攝到之影像Pixel Index進行橫向校正,使得每一個像素點皆可映射為空間中之實際之座標點,達到建立量測結果三維座標值之目標,並達成50um之縱向準度與150um之橫向準度。完成單面量測之後,對於一個實際之完整物體可以進行完整三維模型之建立,以旋轉之方式對每個角度進行量測之後,經由校正旋轉軸方向與位置之方式來對單面進行旋轉以拼合為完整之360度立體模型,並在文末給出了實驗系統之精準度等數值與實際建立模型之範例。

    This work aims on the calibration procedure of fringe projection profilometry and the reconstruction of a 3D profile model. To establish the relationship between the theoretical FPP technique and the practical measurement, the calibration procedure is used to transfer the measured metrics to the real world coordinates. First, the depth information taken from the FPP system is calibrated by the “Phase to Depth Equation”. Second, the technique of camera calibration is adopted to construct the 3D coordinate system of the measurement and the lateral coordinate of the measured results. Finally, the calibration of the revolution axis is carried out for the reconstruction of the whole shape 360 degree model. System parameters and an example are attached at the end of this work.
    After the calibration procedure, we can establish the accuracy of 40 um in vertical and 150 um in lateral around the 20*20*16 cubic centimeter measurement range.

    目錄 論文摘要 I ABSTRACT II 目錄 II 圖目錄 III 表目錄 VII 第一章 緒論 1 1.1 光學三維量測技術之應用概況 1 1.2 條紋投影輪廓量測技術簡介 2 1.3 研究目的與動機 4 1.4 論文架構 5 第二章 條紋投影輪廓測量技術之運作原理 6 2.1 光學三角量測法 6 2.2 相位計算及相位展開 8 2.2.1 相位移演算法 9 2.2.2 相位展開 11 2.3 雙頻式投影條紋 12 第三章 取像系統校正之方式 17 3.1 條紋投影輪廓量測系統之縱深校正 17 3.1.1 「相位-縱深」關係式之建立 18 3.1.2 縱深方向解析能力之標定 19 3.2 相機校正與橫向座標校正 20 3.2.1 校機校正及其內外參數之計算 21 3.2.2 像差修正 22 3.2.3 多座標系之映射轉換 24 3.3 旋轉軸之標定 25 3.3.1 旋轉軸方向與位置之標定方式 26 第四章 實驗結果與數據分析 29 4.1 系統裝置與實驗設置 29 4.2 實驗結果與數據 31 4.2.1 深度校正與縱向解析度 31 4.2.2 相機校正與橫向座標輸出 39 4.2.3 旋轉軸標定 42 4.2.4 實驗系統技術數據 45 4.2.5 建立之三維點雲模型 46 4.3 模組化系統架構 48 第五章 結論與未來展望 50 參考文獻 52

    參考文獻
    [1] S.H. Rowe and W.T. Welford, “Surface topography of non-optical surfaces by projected interference fringes,” Nature 326, 786-788, (1967).
    [2] S.Siva Gorthi and P.Rastogi, “Fringe projection techniques : whither we are ?,”Opt.Lasers Eng., 48, 133-140,(2010).
    [3] R. E. Brooks and L.O. Heflinger, “Moire gauging using optical interference patterns,” Appl. Opt., 8, 935-959 ,1969).
    [4] H. Takasaki, “Moire Topograpgy,” Appl. Opt., 9, 1467-1272,(1970).
    [5] P.S Huang and F.Jin, and F.P. Chiang, “Quantitative evaluation of corrosion by a figital fringe projection technique,” Opt. Lasers Eng., 31, 371-380, (1999).
    [6] C. Quan, and C. Tay, X. Kang, X. He, and H.Shang “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt., 42, 2326-2335, (2003).
    [7] X.Y. Su, and G. von Bally, F.Vulicevic,“Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt.Commun., 98, 141-150, (1993).
    [8] P. Carré, “Installation et utilisation du comparateur photoélectrique et interferentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13-23,(1966)
    [9] R. Crane, “Interference Phase Measurement,” Appl. Opt., 8, 538-542, (1969).
    [10] M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982).
    [11] M. Takeda, and K. Mutoh, “Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes,” Appl. Opt., 22, 3977-3982, (1983).
    [12] N.Karpinsky, and S.Zhang,“Composite phase-shifting algorithm for three-dimensional shape compression”Opt. Eng., 49, 063604, (2010).
    [13] J. Li, X. Su, and L. Guo, “Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,”Opt. Eng., 29, 1439-1444, (1990).
    [14] X. Su, and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35, 263-284, (2001).
    [15] Y. Wang, and S. Zhang, Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing., Appl. Opt, 51, 861–872, (2012).
    [16] J. Li, H.J. Su, and X.Y. Su, “Two-frequency grating used in phase-measuring profilometry,” Appl. Opt, 36, 277–280,(1997).
    [17] W.H. Su and H. Liu, “Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities,” Opt. Express, 14, 9178–9187, (2006).
    [18] S. Xiao, W. Tao, and H. Zhao, “A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement,” Sensors 2016, 16, 612, (2016).
    [19] W.H. Su, “Color-encoded fringe projection for 3D shape measurements,” Opt. Express, 15, 13167–13181, (2007).
    [20] S.Zhang, and P.S. Huanf, ” Novel method for structured light system calibration” Opt. Eng., 45, 083601, (2006).
    [21] H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun., 206, 65-80,(2003).
    [22] L. Merner, Y. Wang, and S. Zhang “Accurate calibration for 3D shape measurement system using a binary defocusing technique,” Opt. Laser Eng., 51, 514–519, (2013).
    [23] M. Vo, Z. Wang, B. Pan, and T. Pan, “Hyper-accurate flexible calibration technique for fringe-projection-based three-dimensional imaging,” Opt. Express, 20, 16926–16941, (2012).
    [24] P. Tavares and M. Vaz, “Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry,” Opt. Commun. 274, 307, (2007).
    [25] S. Feng, Q. Chen, C. Zuo, J. Sun, S. Yu, “High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion,”Opt. Commun, 329, (2014).
    [26] E. Horn and N. Kiryati, “Toward optimal structured light patterns,” Image Vision Comput. 17, 87‒ 97, (1999).
    [27] A.Georgopoulos, C.Ioannidis ,and A. Valanis, “Assessing the Performance of a Structured Light Scanner, International Archives of Photogrammetry,” Remote Sensing and Spatial Information Sciences, 38, 250-255,(2010).
    [28] G. Sansoni, M. Carocci,and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensorbased on the projection of structured light,” {IEEE} Instrum. Meas. Mag., 49, 628-636, (2000).
    [29] D.Mahmoud“Optimization of the longitudinal resolution of a structured light shape reconstruction system, a DOE approach,” J. Opt. A: Pure Appl. Opt., 8, S518-S523, (2006).
    [30] Z.Zhang, “A flexible new technique for camera calibration.” IEEE TPAMI, 22:1330–1334, (2000).
    [31] J. Heikkil and O. Silven, “A four-step camera calibration procedure with implicit image correction,” IEEE Computer Society, 1106‒ 111,(1997).
    [32] What Is Camera Calibration? - MATLAB & Simulink – MathWorks
    [33] M. L. Dai, L. J. Chen, F. J. Yang, and X. Y. He, “Calibration of revolution axis for 360  deg surface measurement,” Appl. Opt., 52, 5440–5448, (2013).
    [34] R. Sitnik, M. Kujawinska, and J.Woznicki, “Digital fringe projectionsystem for large-volume 360 deg shape measurement,”Opt. Eng., 41, 2443–2449, (2002).
    [35] P. Zheng, H. Guo, Y. Yu, and M. Chen, “Three-dimensional profilemeasurement using a flexible new multi-view connectionmethod,” in Proc. SPIE 7155, 715539, (2008).
    [36] Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50(17), 2572–2581, (2011).
    [37] B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured-light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
    [38] Z. Zhang, H. Ma, S. Zhang, T. Guo, C. E. Towers, and D. P. Towers, “Simple calibration of a phase-based 3D imaging system based on uneven fringe projection,” Opt. Lett., 36, 627, (2011).
    [39] H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914, (2004).
    [40] Y. Wang, and S. Zhang, “Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 51, 861–872, (2012).
    [41] G. Sansoni, M. Carocci, R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573, (1999).
    [42] T. Bothe, W. Li, C. von Kopylow, and W. Jueptner, “High-resolution 3D shape measurement on specular surfaces by fringe reflection,” Proc. SPIE 5457, 411–422, (2004).
    [43] U. Paul Kumar, U. Somasundaram, M. Pkothiyal, and N. Krishnamohan, “Single frame digital Fringe projection profilometry for 3-D surface shape measurement,” Optik 124, 166–169, (2013).
    [44] T. Yatagai, M. Idesawa, S. Saito, “Automatic Topography Using High Precision Digital Moire Methods,” Proc. Soc. Photo-Opt. Instrum. Eng. 361, 81, (1982).

    下載圖示
    QR CODE