簡易檢索 / 詳目顯示

研究生: 吳國英
Wibowoputri, Florencia Inge
論文名稱: 消費者在Instagram上的投入與消費行為:以社交影響及人際吸引理論為觀點
Why consumers purchase based on social media influencer's recommendation? A social influence and interpersonal attraction theory perspective
指導教授: 鄒蘊欣
Chou, Yun-Hsin
口試委員: 張瑋倫
Chang, Wei-Lun
許書瑋
Hsu, Shu-Wei
鄒蘊欣
Chou, Yun-Hsin
口試日期: 2022/06/09
學位類別: 碩士
Master
系所名稱: 管理研究所
Graduate Institute of Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 43
中文關鍵詞: 社交商務社群媒體影響者社會影響理論人際吸引理論購買意願
英文關鍵詞: Social commerce, social media influencer, social influence theory, interpersonal attraction theory, purchase intention
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202200988
論文種類: 代替論文:作品連同書面報告(藝術類)
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著互聯網技術的快速發展,改變了現代人的生活。即使有地域的差距,人們仍可以透過社群媒體相互聯繫以及傳遞訊息。社群媒體的用戶逐漸增加,同時吸引越來越多人成為活躍用戶。社群媒體正連結著人們的生活,除此之外,社群媒體也將傳統的電子商務(e-commerce) 逐漸轉為社交商務 (social commerce)。這變化也促成消費者行為的改變。
    本研究目的是欲了解當前的社交商務是否仍成為未來的趨勢,並進一步了解品牌對未來的期望。隨著目前社交商務的發展趨勢,人們更積極地使用社群媒體查詢訊息,這也是為何品牌傾向經營社群媒體的原因。品牌使用社群媒體不僅可以推廣特定產品,還可以在線向潛在顧客提升其品牌知名度。因此,本研究採用社會影響理論 (Social Influence Theory)以及人際吸引理論 (Interpersonal Attraction Theory)作為理論基礎,在觀察消費者關注和了解Instagram上的影響者後,提出消費者購買意願相關的研究模型及假說。研究發現,外部驅動因素以及內部驅動因素是提升消費者於社群媒Instagram的消費行為以及購買決策的兩大關鍵因素。
    本研究採用判斷抽樣法,透過Instagram來蒐集調查問卷。針對企業的管理意涵,本研究提出企業需要了解消費者的需求,同時於其社交商務網站上建立有效之策略。此外社交商務的行銷經理對於是否透過Instagram的影響者作為宣傳其產品的媒介發揮重要作用。了解並正確選擇合適的Instagram影響者可以幫助企業創造一個有利的商業環境,同時戰略性地最大化其利潤。

    關鍵字:社交商務、社群媒體影響者、社會影響理論、人際吸引理論、購買意願

    The rapid growth of technology and the internet have changed people’s life. People are now connected and able to exchange information even when they are living far from each other by using social media. The use of social media itself is gradually increasing and attracting people to become active users of it. Social media is connecting people’s life, but other than that, social media also has shifted traditional e-commerce into social commerce. This change also leads to a shift in consumer behavior.
    The goal of this study is to know whether the current trend of social commerce will still be the trend in the future and also to learn more about what a brand can expect. With the current trend of social commerce, people are more active in using social media to find information. That is also the reason why a brand tends to grow its social community online. A brand that used social media promotes not only a particular product but also increases its brand awareness online to the new potential customer. Therefore, this research draws on the Social Influence Theory and Interpersonal Attraction Theory to propose a research model and the hypotheses related to consumer purchase intention after following and seeing what a focal Instagram influencer is. In particular, external and internal drivers are the two main drivers that enhance consumer behavior on social media Instagram, and lead to a purchase decision.
    The study conducts a judgmental sampling method, which recruits the participants through Instagram to fill in a survey. The managerial implication to business is the need of understanding the customers’ needs, and build confidence, and practical strategies on their social commerce site. Other than that, marketing managers of social commerce are playing a great role to understand whether there is a need of using Instagram influencers as a medium to promote their products or not. Understanding better the use of Instagram influencers and the correct choice of Instagram influencers can help businesses to have a conducive business environment and develop their strategies to maximize their profit.

    Keywords: Social commerce, social media influencer, social influence theory, interpersonal attraction theory, purchase intention

    Acknowledgment i 中文摘要 ii Abstract iii Table of Content iv List of Tables v List of Figures vii Chapter 1. Introduction 1 1.1 Research background 1 1.2 Research motivation 3 1.3 Research question 3 Chapter 2. Literature Review 5 2.1 Social Commerce 5 2.2 Social Influence Theory 5 2.2.1 Social Presence 7 2.2.2 Fear of Missing Out (FOMO) 7 2.2.3 Social Comparison 8 2.3 Interpersonal Attraction Theory 9 2.3.1 Trust 9 2.3.2 Familiarity 9 2.4 The intensity of social media usage 10 Chapter 3. Research Model and Hypothesis development 11 3.1 External drivers, internal drivers, and purchase intention 11 3.2 The moderator role of the intensity of social media usage 15 3.3 The mediator role of familiarity and trust 17 Chapter 4. Research Method 19 4.1 Participants 19 4.2 Procedure 19 4.3 Measurement 20 4.4 Data analysis 22 Chapter 5. Results 23 5.1 Descriptive statistic 23 5.2 Reliability analysis 24 5.3 Measurement model 24 5.4 Common method bias (CMB) 26 5.5 Structural equation modeling (SEM) 27 5.6 Interaction-moderation analysis 28 5.7 Research findings and discussion 31 Chapter 6. Conclusion 34 6.1 Research implication 34 6.2 Managerial implication 35 6.3 Limitations and future research 36 References 38

    Accenture. (2022). Technology trends 2022.
    Adobe. (2018). The 2018 Digital Transformation Report.
    Akman, I., & Mishra, A. (2017). Factors influencing consumer intention in social commerce adoption. Information Technology & People.
    Alt, D. (2015). College students’ academic motivation, media engagement and fear of missing out. Computers in Human Behavior, 49, 111-119
    Anderson, R. E., & Srinivasan, S. S. (2003). E‐satisfaction and e‐loyalty: A contingency framework. Psychology & marketing, 20(2), 123-138.
    Beyens, I., Frison, E., & Eggermont, S. (2016). “I don’t want to miss a thing”: Adolescents’ fear of missing out and its relationship to adolescents’ social needs, Facebook use, and Facebook related stress. Computers in Human Behavior, 64, 1-8.
    Blau, P. M. (1968). Social exchange. International encyclopedia of the social sciences, 7(4), 452-457.
    Byrne, D., & Griffith, W. (1973). Interpersonal attraction. Annual review of psychology.
    Chae, J. (2017). Virtual makeover: Selfie-taking and social media use increase selfie-editing frequency through social comparison. Computers in Human Behavior, 66, 370-376.
    Cheng, X., Gu, Y., & Shen, J. (2019). An integrated view of particularized trust in social commerce: An empirical investigation. International Journal of Information Management, 45, 1-12.
    Choi, Y., Thoeni, A., & Kroff, M. W. (2018). Brand actions on social media: Direct effects on electronic word of mouth (eWOM) and moderating effects of brand loyalty and social media usage intensity. Journal of Relationship Marketing, 17(1), 52-70.
    Chung, N., Han, H., & Koo, C. (2015). Adoption of travel information in user-generated content on social media: the moderating effect of social presence. Behaviour & information technology, 34(9), 902-919.
    Corritore, C. L., Kracher, B., & Wiedenbeck, S. (2003). On-line trust: concepts, evolving themes, a model. International journal of human-computer studies, 58(6), 737-758.
    Cyr, D., Hassanein, K., Head, M., & Ivanov, A. (2007). The role of social presence in establishing loyalty in e-service environments. Interacting with computers, 19(1), 43-56.
    Das, G. (2016). Antecedents and consequences of trust: An e-tail branding perspective. International Journal of Retail & Distribution Management.
    Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The journal of abnormal and social psychology, 51(3), 629.
    Digital Marketing Institute. (2021). Trends in Digital Marketing Report.
    Featherman, M. S., & Hajli, N. (2016). Self-service technologies and e-services risks in social commerce era. Journal of Business Ethics, 139(2), 251-269.
    Festinger, L. (1954). A theory of social comparison processes. Human relations, 7(2), 117-140.
    Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
    Gabler, C.B. and Reynolds, K.E. (2013), “Buy now or buy later: the effects of scarcity and discounts on purchase decisions”, Journal of Marketing Theory and Practice, Vol. 21 No. 4, pp. 441-456.
    Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737.
    Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS Q., 27(1), 51–90.
    Gefen, D., & Straub, D. W. (2004). Consumer trust in B2C e-Commerce and the importance of social presence: experiments in e-Products and e-Services. Omega, 32(6), 407-424.
    Gibbons, F. X., & Buunk, B. P. (1999). Individual differences in social comparison: development of a scale of social comparison orientation. Journal of personality and social psychology, 76(1), 129.
    Hajli, N., Sims, J., Zadeh, A. H., & Richard, M. O. (2017). A social commerce investigation of the role of trust in a social networking site on purchase intentions. Journal of Business Research, 71, 133-141.
    Handarkho, Y. D. (2020). The intentions to use social commerce from social, technology, and personal trait perspectives: analysis of direct, indirect, and moderating effects. Journal of Research in Interactive Marketing.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1), 115-135.
    Hsiao, K. L., Lin, J. C. C., Wang, X. Y., Lu, H. P., & Yu, H. (2010). Antecedents and consequences of trust in online product recommendations: An empirical study in social shopping. Online Information Review.
    Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 183-213.
    Kartajaya, H., Kotler, P., & Setiawan, I. (2016). Marketing 4.0: moving from Traditional to Digital. John Wiley & Sons.
    Kelman, H. C. (1958). Compliance, identification, and internalization three processes of attitude change. Journal of conflict resolution, 2(1), 51-60.
    Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564.
    Kim, S., & Park, H. (2013). Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. International Journal of Information Management, 33(2), 318-332.
    Komiak, S. Y., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS quarterly, 941-960.
    Kotler, P. (2017). Philip Kotler: some of my adventures in marketing. Journal of Historical Research in Marketing.
    Kumar, N., & Benbasat, I. (2002). Para-social presence and communication capabilities of a web site: a theoretical perspective. e-Service, 1(3), 5-24.
    Lee, Y., & Kwon, O. (2011). Intimacy, familiarity and continuance intention: An extended expectation–confirmation model in web-based services. Electronic Commerce Research and Applications, 10(3), 342-357.
    Leong, L. Y., Hew, T. S., Ooi, K. B., & Chong, A. Y. L. (2020). Predicting the antecedents of trust in social commerce–A hybrid structural equation modeling with neural network approach. Journal of Business Research, 110, 24-40.
    Li, C. Y. (2019). How social commerce constructs influence customers' social shopping intention? An empirical study of a social commerce website. Technological Forecasting and Social Change, 144, 282-294.
    Li, J., Qi, J., Wu, L., Shi, N., Li, X., Zhang, Y., & Zheng, Y. (2021). The Continued Use of Social Commerce Platforms and Psychological Anxiety—The Roles of Influencers, Informational Incentives and FoMO. International Journal of Environmental Research and Public Health, 18(22), 12254.
    Lindell, M. K., & Whitney, D. J. (2001). Accounting for common method variance in cross-sectional research designs. Journal of applied psychology, 86(1), 114.
    Liu, H., Chu, H., Huang, Q., & Chen, X. (2016). Enhancing the flow experience of consumers in China through interpersonal interaction in social commerce. Computers in Human Behavior, 58, 306-314.
    Lou, C., & Yuan, S. (2019). Influencer marketing: how message value and credibility affect consumer trust of branded content on social media. Journal of Interactive Advertising, 19(1), 58-73.
    Lu, B., Fan, W., & Zhou, M. (2016). Social presence, trust, and social commerce purchase intention: An empirical research. Computers in Human behavior, 56, 225-237.
    Luo, Q., & Zhong, D. (2015). Using social network analysis to explain communication characteristics of travel-related electronic word-of-mouth on social networking sites. Tourism Management, 46, 274-282.
    MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct measurement and validation procedures in MIS and behavioral research: Integrating new and existing techniques. MIS quarterly, 293-334.
    Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction. Psychological methods, 9(3), 275.
    McCroskey, J. C., & McCain, T. A. (1974). The measurement of interpersonal attraction.
    Mutz, D. C. (2009). Effects of Internet commerce on social trust. Public Opinion Quarterly, 73(3), 439-461.
    Ng, C. S. P. (2013). Intention to purchase on social commerce websites across cultures: A cross-regional study. Information & management, 50(8), 609-620.
    Osatuyi, B., & Turel, O. (2018). Social motivation for the use of social technologies: an empirical examination of social commerce site users. Internet Research.
    Park, H., & Cameron, G. T. (2014). Keeping it real: Exploring the roles of conversational human voice and source credibility in crisis communication via blogs. Journalism & Mass Communication Quarterly, 91(3), 487-507.
    Park, S. Y., & Baek, Y. M. (2018). Two faces of social comparison on Facebook: The interplay between social comparison orientation, emotions, and psychological well-being. Computers in Human Behavior, 79, 83-93.
    Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 885(879), 10-1037.
    Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in Human Behavior, 29(4), 1841–1848.
    Roberts, J. A., & David, M. E. (2020). The social media party: Fear of missing out (FoMO), social media intensity, connection, and well-being. International Journal of Human–Computer Interaction, 36(4), 386-392.
    Schmitt, J. B., Breuer, J., & Wulf, T. (2021). From cognitive overload to digital detox: Psychological implications of telework during the COVID-19 pandemic. Computers in human behavior, 124, 106899.
    Scott, C. F., Bay-Cheng, L. Y., Prince, M. A., Nochajski, T. H., & Collins, R. L. (2017). Time spent online: Latent profile analyses of emerging adults' social media use. Computers in Human Behavior, 75, 311-319.
    Shen, X. L., Li, Y. J., Sun, Y., Chen, Z., & Wang, F. (2019). Understanding the role of technology attractiveness in promoting social commerce engagement: Moderating effect of personal interest. Information & Management, 56(2), 294-305.
    Shen, Y. C., Huang, C. Y., Chu, C. H., & Liao, H. C. (2010). Virtual community loyalty: An interpersonal-interaction perspective. International Journal of Electronic Commerce, 15(1), 49-74.
    Stein, C. M., Morris, N. J., Hall, N. B., & Nock, N. L. (2017). Structural equation modeling. In Statistical Human Genetics (pp. 557-580). Humana Press, New York, NY.
    Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in science education, 48(6), 1273-1296.
    Tajvidi, M., Richard, M. O., Wang, Y., & Hajli, N. (2020). Brand co-creation through social commerce information sharing: The role of social media. Journal of Business Research, 121, 476-486.
    Ugur, N. G., & Koc, T. (2015). Time for digital detox: Misuse of mobile technology and phubbing. Procedia-Social and Behavioral Sciences, 195, 1022-1031.
    WeAreSocial. (2022). Tiktok statistics and trends in 2022.
    Weisberg, J., Te'eni, D., & Arman, L. (2011). Past purchase and intention to purchase in e‐commerce: The mediation of social presence and trust. Internet research.
    Xiang, Z., Magnini, V. P., & Fesenmaier, D. R. (2015). Information technology and consumer behavior in travel and tourism: Insights from travel planning using the internet. Journal of retailing and consumer services, 22, 244-249
    Xu-Priour, D. L., Truong, Y., & Klink, R. R. (2014). The effects of collectivism and polychronic time orientation on online social interaction and shopping behavior: A comparative study between China and France. Technological Forecasting and Social Change, 88, 265-275.
    Xu, Z., Islam, T., Liang, X., Akhtar, N., & Shahzad, M. (2021). ‘I'm like you, and I like what you like sustainable food purchase influenced by vloggers: A moderated serial-mediation model. Journal of Retailing and Consumer Services, 63, 102737.

    下載圖示
    QR CODE