研究生: |
趙榮輝 |
---|---|
論文名稱: |
產生三維微細曲面之設計方法 A Method for Generating Three-dimensional Micro-scale Surfaces |
指導教授: |
屠名正
Twu, Ming-Jenq 傅光華 Fu, Guang-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 彈塑性撓性夾具 、三維微細曲面 |
英文關鍵詞: | elastic-plastic flexure hinge mechanism, three-dimensional micro-scale surface |
論文種類: | 學術論文 |
相關次數: | 點閱:233 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一彈塑性撓性夾具(elastic-plastic flexure hinge mechanism,簡稱EPFHM)與壓電致動器產生三維微細曲面之設計方法論,彈塑性撓性夾具經由可控制性位移可產生不同需求之微米等級運動之自由曲面。
設計之初先藉由壓電致動器驅動弱化結構裝置產生X、Y及Z軸變形位移。利用快速原型機與粗糙ABS材料精確製作出的彈塑性撓性夾具,其變形特徵分析可藉由有限元素分析和系統性的實驗來完成。而透過微運動之方法可產生微米級之三維曲面;同時,經過實際驗證之結果顯示,彈塑性撓性夾具已能成功應用於微細曲面的產生。
This paper proposes a design methodology of elastic-plastic flexure hinge mechanism (EPFHM) for precisely generating a three-dimensional micro-scale surface, which is made by elastic-plastic flexure hinge and piezoelectric actuator (PZT). An EPFHM aims at the capacity for generating free-form surface in micro-moving class via the controllable displacement of an EPFHM in relation to various required demands.
The design process starts with a weakened mechanism to generate the deformable displacement driven by a PZT, which is applying on the x, y and z-axis. The deformation characteristics analyzed by the combination of finite element analysis and systematic experiment help precisely invent the EPFHM made of rough ABS by utilizing a rapid prototyping machine. The three-dimensional micro-scale surfaces will be generated by the micro-moving methodology. The results manifests that an EPFHM has been successfully applied to micro-scale surfaces after practical verification.
[1]. Martin L. Culpepper and Gordon Anderson, “Design of a low-cost nano-manipulator which utilizes a monolithic,“ spatial compliant mechanism, Precision Engineering, vol. 28, pp. 469-482, 2004.
[2]. J. M. Paros and L. Weisbord, “How to Design Flexure Hinge,” Machine Design, November 25 , Vol.37 ,pp. 151-157, 1965.
[3]. K. S. Chen, D. L. Trumper and S. T. Smith, “Design and control for an electromagnetically driven stage,“ Precision Engineering, vol. 26, pp. 355-369, 2002.
[4]. Wouter O. Schotborgh, Frans G.M. Kokkeler, Hans Tragter and Fred J.A.M.van Houten, “Dimensionless design graphs for flexure element and a comparison between three flexure element,“ Precision Engineering, vol. 29, pp. 41-47, 2005.
[5]. Ivano Beltrami, Cédric Joseph, Reymond Clavel, Jean-Philippe Bacher, and Stefano Bottinelli, “Micro and nanoelectric-discharge machining,” Journal of Materials Processing Technology, Vol.149, pp.263–265, 2004.
[6]. Jae W. Ryu and Dae-Gab Gweon, “Error analysis of a flexure hinge mechanism induced by machining imperfection,“ Precision Engineering, vol. 21, pp. 83-89, 1997.
[7]. W. Xu and T. King,“Flexure Hinges for Piezo-actuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Consideration,”Precision Engineering, Vol. 19, No. 1, pp. 4-10, 1996.
[8]. S.R. Park and S.H. Yang, “A mathematical approach for analyzing ultra precision positioning system with compliant mechanism,” Journal of Materials Processing Technology, Vol.164-165, pp.1584–1589, 2005.
[9]. Haoquan Ma, Dejin Hu and Kai Zhang, “A fast tool feeding mechanism using piezoelecteic actuators in noncircular turning,“ Int J Adv Manuf Technol, 2005.
[10]. S. Canfield and M. Frecker, “Topology optimization of compliant mechanical amplifiers for piezoelectric actuators,“ Struct Multidisc Optim., vol. 20, pp. 269-279 © Springer-Verlag 2000.
[11].Nicolae Lobontiu, Jeffrey S.N. Panine, Edward O’Malley and Marc Samuelson, “Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations,“ Precision Engineering, vol. 26, pp. 183-192, 2002.
[12]. A. T. Elfizy, G. M. Bone and M.A. Elbestawi, “Design and control of a dual-stage feed drive,“ International Journal of Machine Tools and Manufacture, vol. 45, pp. 153-165, 2005.