研究生: |
黃淨盈 Huang, Jing-Ying |
---|---|
論文名稱: |
以糖尿病大鼠模式探討負離子與後生元對皮膚傷口癒合之效應 Investigating the Effects of Negative Ions and Postbiotics on Skin Wound Healing in a Diabetic Rat Model. |
指導教授: |
鄭劍廷
Chien, Chiang-Ting |
口試委員: |
鄭劍廷
Chien, Chiang-Ting 陳冬生 Chen, Tung-Sheng 徐世平 Hsu, Shih-Ping |
口試日期: | 2024/07/30 |
學位類別: |
碩士 Master |
系所名稱: |
生技醫藥產業碩士學位學程 Graduate Program of Biotechnology and Pharmaceutical Industries |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 傷口癒合 、急性傷口 、M1巨噬細胞 、TNF-α 、IL-1β 、MMP-9 、糖尿病傷口 、負離子 、後生元 |
英文關鍵詞: | wound healing, acute wounds, M1 macrophages, TNF-α, IL-1β, MMP-9, diabetic wounds, negative ions, postbiotics |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401608 |
論文種類: | 學術論文 |
相關次數: | 點閱:82 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傷口癒合是分子秩序井然的協同過程,過程中任一環節調控異常便可能導致傷口癒合不良。傷口癒合不良原因之一為發炎因子TNF-α與IL-1β顯著升高,引起M1型巨噬細胞過度活化,進而誘發MMP-9過度分泌,破壞傷口處的細胞外基質,以至於傷口的重建和癒合被干擾。同時,M1巨噬細胞透過自泌TNF-α與IL-1β自我刺激,保持在促發炎態,形成一發炎正回饋,導致傷口持續發炎延長癒合時間。在糖尿病患者中,傷口癒合困難更為明顯,因高血糖環境使發炎因子濃度居高不下,持續的發炎反應導致傷口癒合被顯著延遲。過去負離子被提出具有促進血液循環、改善氧化壓力的效用;後生元也曾被提出對於皮膚慢性傷口有所幫助,因此,基於上述背景,高表現量的發炎症因子、MMP-9與M1型巨噬細胞的過度活化,是傷口癒合不佳的主因之一,是故,阻斷M1型巨噬細胞引起的發炎回饋循環是改善傷口癒合的關鍵,在其中的負離子與後生元角色值得探究。
本研究旨在探討負離子與後生元對糖尿病傷口癒合的影響,研究採用鏈脲佐菌素(STZ)誘導糖尿病大鼠模型,建立背部全皮層傷口,實驗分作對照組、糖尿病組、傷口治療組和糖尿病傷口治療共四組。經負離子、後生元處理組的傷口癒合速度與未治療組相比皆顯著加快,同時,負離子與後生元終止傷口的持續發炎,並促進使傷口處膠原蛋白增生、肉芽組織形成與再上皮化發生,使組織修復和傷口癒合。
綜上所述,負離子和後生元兩者可以降低氧化壓力、減少發炎反應,甚至可能可以調節M1型巨噬細胞功能,以加速傷口癒合,在改善傷口癒合方面具潛在應用價值,同時提供急性傷口另一新型、有效的治療策略。
Wound healing is a coordinated process that can be disrupted by regulatory abnor-malities, leading to impaired healing. Elevated inflammatory factors such as TNF-α, IL-1β and hyperactivate M1 macrophages, causing excessive secretion of MMP-9, which de-grades the extracellular matrix and disrupts wound reconstruction. M1 macrophages self-stimulate through autocrine of TNF-α and IL-1β, creating a positive feedback loop of inflammation that prolongs healing. In diabetic patients, high blood sugar exacerbates this issue, keeping inflammatory factor levels high and significantly delaying wound healing.
Previous studies suggest that negative ions can promote blood circulation and reduce oxidative stress, while postbiotics may aid in chronic skin wounds. This study investi-gated the effects of negative ions and postbiotics on diabetic wound healing using a streptozotocin (STZ)-induced diabetic rat model with full-thickness back wounds. The experiment includes four groups: control, diabetes, wound treatment, and diabetes wound treatment. Treatment with negative ions and postbiotics significantly accelerated wound healing compared to untreated groups. Additionally, these treatments reduced persistent inflammation, promoted collagen proliferation, granulation tissue formation, and re-epithelialization, facilitating tissue repair and wound healing.
In summary, negative ions and postbiotics can reduce oxidative stress and inflamma-tion, and potentially regulate M1 macrophage function to accelerate wound healing. These findings suggest their potential application in improving wound healing, offering a novel and effective treatment strategy for wound healings.
Adjimani, J. P., & Asare, P. (2015). Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep, 2, 721-728. https://doi.org/10.1016/j.toxrep.2015.04.005
Ashcroft, G. S., Jeong, M. J., Ashworth, J. J., Hardman, M., Jin, W., Moutsopoulos, N., Wild, T., McCartney-Francis, N., Sim, D., McGrady, G., Song, X. Y., & Wahl, S. M. (2012). Tumor necrosis factor-alpha (TNF-alpha) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen, 20(1), 38-49. https://doi.org/10.1111/j.1524-475X.2011.00748.x
Bailey, W. H., Williams, A. L., & Leonhard, M. J. (2018). Exposure of laboratory animals to small air ions: a systematic review of biological and behavioral studies. Biomed Eng Online, 17(1), 72. https://doi.org/10.1186/s12938-018-0499-z
Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair Regen, 16(5), 585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
Benoot, T., Piccioni, E., De Ridder, K., & Goyvaerts, C. (2021). TNFalpha and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci, 22(16). https://doi.org/10.3390/ijms22168691
Bradley, J. R., Wang, J., Pacey, S., Warren, A. Y., Pober, J. S., & Al-Lamki, R. S. (2020). Tumor necrosis factor receptor-2 signaling pathways promote survival of cancer stem-like CD133(+) cells in clear cell renal carcinoma. FASEB Bioadv, 2(2), 126-144. https://doi.org/10.1096/fba.2019-00071
Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta, 1803(1), 55-71. https://doi.org/10.1016/j.bbamcr.2010.01.003
Caley, M. P., Martins, V. L., & O'Toole, E. A. (2015). Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle), 4(4), 225-234. https://doi.org/10.1089/wound.2014.0581
Chambers, E. S., & Vukmanovic-Stejic, M. (2020). Skin barrier immunity and ageing. Immunology, 160(2), 116-125. https://doi.org/10.1111/imm.13152
Chang, K., Uitto, J., Rowold, E. A., Grant, G. A., Kilo, C., & Williamson, J. R. (1980). Increased collagen cross-linkages in experimental diabetes: reversal by beta-aminopropionitrile and D-penicillamine. Diabetes, 29(10), 778-781. https://doi.org/10.2337/diacare.20.10.778
Charzewski, L., Krzysko, K. A., & Lesyng, B. (2021). Structural characterisation of inhibitory and non-inhibitory MMP-9-TIMP-1 complexes and implications for regulatory mechanisms of MMP-9. Sci Rep, 11(1), 13376. https://doi.org/10.1038/s41598-021-92881-x
Cheng, K. Y., Lin, Z. H., Cheng, Y. P., Chiu, H. Y., Yeh, N. L., Wu, T. K., & Wu, J. S. (2018). Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet. Sci Rep, 8(1), 12214. https://doi.org/10.1038/s41598-018-30597-1
Dai, J., Shen, J., Chai, Y., & Chen, H. (2021). IL-1beta Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway. Mediators Inflamm, 2021, 6645766. https://doi.org/10.1155/2021/6645766
Dari, S., Fadai, N. T., & O'Dea, R. D. (2023). Modelling the Effect of Matrix Metalloproteinases in Dermal Wound Healing. Bull Math Biol, 85(10), 96. https://doi.org/10.1007/s11538-023-01195-8
Della Vecchia, A., Mucci, F., Pozza, A., & Marazziti, D. (2021). Negative Air Ions in Neuropsychiatric Disorders. Curr Med Chem, 28(13), 2521-2539. https://doi.org/10.2174/0929867327666200630104550
Demers, M., Dagnault, A., & Desjardins, J. (2014). A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin Nutr, 33(5), 761-767. https://doi.org/10.1016/j.clnu.2013.10.015
denDekker, A. D., Davis, F. M., Joshi, A. D., Wolf, S. J., Allen, R., Lipinski, J., Nguyen, B., Kirma, J., Nycz, D., Bermick, J., Moore, B. B., Gudjonsson, J. E., Kunkel, S. L., & Gallagher, K. A. (2020). TNF-alpha regulates diabetic macrophage function through the histone acetyltransferase MOF. JCI Insight, 5(5). https://doi.org/10.1172/jci.insight.132306
Dinarello, C. A. (2018). Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev, 281(1), 8-27. https://doi.org/10.1111/imr.12621
Frykberg, R. G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle), 4(9), 560-582. https://doi.org/10.1089/wound.2015.0635
Gharbia, F. Z., Abouhashem, A. S., Moqidem, Y. A., Elbaz, A. A., Abdellatif, A., Singh, K., Sen, C. K., & Azzazy, H. M. E. (2023). Adult skin fibroblast state change in murine wound healing. Sci Rep, 13(1), 886. https://doi.org/10.1038/s41598-022-27152-4
Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ Res, 107(9), 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
Greenhalgh, D. G. (2003). Wound healing and diabetes mellitus. Clin Plast Surg, 30(1), 37-45. https://doi.org/10.1016/s0094-1298(02)00066-4
Guo, S., & Dipietro, L. A. (2010). Factors affecting wound healing. J Dent Res, 89(3), 219-229. https://doi.org/10.1177/0022034509359125
Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314-321. https://doi.org/10.1038/nature07039
Hacini-Rachinel, F., Gheit, H., Le Luduec, J. B., Dif, F., Nancey, S., & Kaiserlian, D. (2009). Oral probiotic control skin inflammation by acting on both effector and regulatory T cells. PLoS One, 4(3), e4903. https://doi.org/10.1371/journal.pone.0004903
Han, G., & Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther, 34(3), 599-610. https://doi.org/10.1007/s12325-017-0478-y
Hesketh, M., Sahin, K. B., West, Z. E., & Murray, R. Z. (2017). Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int J Mol Sci, 18(7). https://doi.org/10.3390/ijms18071545
Homayouni-Rad, A., Soroush, A. R., Khalili, L., Norouzi-Panahi, L., Kasaie, Z., & Ejtahed, H. S. (2016). Diabetes Management by Probiotics: Current Knowledge and Future Pespective. Int J Vitam Nutr Res, 86(3-4), 215-227. https://doi.org/10.1024/0300-9831/a000273
Honma, K., Machida, C., Mochizuki, K., & Goda, T. (2020). Glucose and TNF enhance expression of TNF and IL1B, and histone H3 acetylation and K4/K36 methylation, in juvenile macrophage cells. Gene X, 5, 100034. https://doi.org/10.1016/j.gene.2020.100034
Horiuchi, T., Mitoma, H., Harashima, S., Tsukamoto, H., & Shimoda, T. (2010). Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford), 49(7), 1215-1228. https://doi.org/10.1093/rheumatology/keq031
Jamaran, S., Jafari, P., Marjani, A., Akbari, N., & Feizabad, M. M. (2021). Novel Wound Dressing Based on Postbiotic/Chitosan Film Accelerates Cutaneous Wound Healing [Research Article]. Jundishapur J Microbiol, 14(12), e120806. https://doi.org/10.5812/jjm.120806
Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., Lee, S. R., & Yang, S. H. (2021). The Role of Tumor Necrosis Factor Alpha (TNF-alpha) in Autoimmune Disease and Current TNF-alpha Inhibitors in Therapeutics. Int J Mol Sci, 22(5). https://doi.org/10.3390/ijms22052719
Jiang, S. Y., Ma, A., & Ramachandran, S. (2018). Negative Air Ions and Their Effects on Human Health and Air Quality Improvement. Int J Mol Sci, 19(10). https://doi.org/10.3390/ijms19102966
Kanda, K., Nishimura, H., Koiso, T., Takemoto, K., Nakagoe, K., Yamada, T., Takahashi, M., Hanafusa, M., Kawahara, T., Yanagida, Y., Kuramochi, J., & Fujiwara, T. (2023). Applying negative ions and an electric field to countermeasure droplets/aerosol transmission without hindering communication. Sci Rep, 13(1), 13965. https://doi.org/10.1038/s41598-023-40303-5
Klar, A. S., Michalak-Micka, K., Biedermann, T., Simmen-Meuli, C., Reichmann, E., & Meuli, M. (2018). Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin substitutes in vivo. Pediatr Surg Int, 34(2), 129-135. https://doi.org/10.1007/s00383-017-4179-z
Kloc, M., Ghobrial, R. M., Wosik, J., Lewicka, A., Lewicki, S., & Kubiak, J. Z. (2019). Macrophage functions in wound healing. J Tissue Eng Regen Med, 13(1), 99-109. https://doi.org/10.1002/term.2772
Knackstedt, R., Knackstedt, T., & Gatherwright, J. (2020). The role of topical probiotics on wound healing: A review of animal and human studies. Int Wound J, 17(6), 1687-1694. https://doi.org/10.1111/iwj.13451
Kotwal, G. J., & Chien, S. (2017). Macrophage Differentiation in Normal and Accelerated Wound Healing. Results Probl Cell Differ, 62, 353-364. https://doi.org/10.1007/978-3-319-54090-0_14
Krishnaswamy, V. R., Mintz, D., & Sagi, I. (2017). Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. Biochim Biophys Acta Mol Cell Res, 1864(11 Pt B), 2220-2227. https://doi.org/10.1016/j.bbamcr.2017.08.003
Krzyszczyk, P., Schloss, R., Palmer, A., & Berthiaume, F. (2018). The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol, 9, 419. https://doi.org/10.3389/fphys.2018.00419
Kuninaka, Y., Ishida, Y., Ishigami, A., Nosaka, M., Matsuki, J., Yasuda, H., Kofuna, A., Kimura, A., Furukawa, F., & Kondo, T. (2022). Macrophage polarity and wound age determination. Sci Rep, 12(1), 20327. https://doi.org/10.1038/s41598-022-24577-9
Landen, N. X., Li, D., & Stahle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci, 73(20), 3861-3885. https://doi.org/10.1007/s00018-016-2268-0
Lobmann, R., Ambrosch, A., Schultz, G., Waldmann, K., Schiweck, S., & Lehnert, H. (2002). Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia, 45(7), 1011-1016. https://doi.org/10.1007/s00125-002-0868-8
Lood, C., Blanco, L. P., Purmalek, M. M., Carmona-Rivera, C., De Ravin, S. S., Smith, C. K., Malech, H. L., Ledbetter, J. A., Elkon, K. B., & Kaplan, M. J. (2016). Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med, 22(2), 146-153. https://doi.org/10.1038/nm.4027
Lopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev, 22(4), 189-195. https://doi.org/10.1016/j.cytogfr.2011.10.001
Luanraksa, S., Jindatanmanusan, P., Boonsiri, T., Nimmanon, T., Chaovanalikit, T., & Arnutti, P. (2018). An MMP/TIMP ratio scoring system as a potential predictive marker of diabetic foot ulcer healing. J Wound Care, 27(12), 849-855. https://doi.org/10.12968/jowc.2018.27.12.849
Ma, L., Tu, H., & Chen, T. (2023). Postbiotics in Human Health: A Narrative Review. Nutrients, 15(2). https://doi.org/10.3390/nu15020291
Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat Rev Immunol, 1(2), 135-145. https://doi.org/10.1038/35100529
Mirastschijski, U., Lupse, B., Maedler, K., Sarma, B., Radtke, A., Belge, G., Dorsch, M., Wedekind, D., McCawley, L. J., Boehm, G., Zier, U., Yamamoto, K., Kelm, S., & Agren, M. S. (2019). Matrix Metalloproteinase-3 is Key Effector of TNF-alpha-Induced Collagen Degradation in Skin. Int J Mol Sci, 20(20). https://doi.org/10.3390/ijms20205234
Mirza, R. E., Fang, M. M., Ennis, W. J., & Koh, T. J. (2013). Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes, 62(7), 2579-2587. https://doi.org/10.2337/db12-1450
Mooney, D. P., O'Reilly, M., & Gamelli, R. L. (1990). Tumor necrosis factor and wound healing. Ann Surg, 211(2), 124-129. https://doi.org/10.1097/00000658-199002000-00002
Narauskaite, D., Vydmantaite, G., Rusteikaite, J., Sampath, R., Rudaityte, A., Stasyte, G., Aparicio Calvente, M. I., & Jekabsone, A. (2021). Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel), 14(8). https://doi.org/10.3390/ph14080811
Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact, 19(1), 168. https://doi.org/10.1186/s12934-020-01426-w
Ong, J. S., Taylor, T. D., Yong, C. C., Khoo, B. Y., Sasidharan, S., Choi, S. B., Ohno, H., & Liong, M. T. (2020). Lactobacillus plantarum USM8613 Aids in Wound Healing and Suppresses Staphylococcus aureus Infection at Wound Sites. Probiotics Antimicrob Proteins, 12(1), 125-137. https://doi.org/10.1007/s12602-018-9505-9
Peral, M. C., Rachid, M. M., Gobbato, N. M., Huaman Martinez, M. A., & Valdez, J. C. (2010). Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum. Clin Microbiol Infect, 16(3), 281-286. https://doi.org/10.1111/j.1469-0691.2009.02793.x
Pietrzak, J., Wosiak, A., Szmajda-Krygier, D., Swiechowski, R., Lochowski, M., Pazik, M., & Balcerczak, E. (2023). Correlation of TIMP1-MMP2/MMP9 Gene Expression Axis Changes with Treatment Efficacy and Survival of NSCLC Patients. Biomedicines, 11(7). https://doi.org/10.3390/biomedicines11071777
Qin, X., He, J., Wang, X., Wang, J., Yang, R., & Chen, X. (2023). The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol, 14, 1256687. https://doi.org/10.3389/fimmu.2023.1256687
Reinke, J. M., & Sorg, H. (2012). Wound repair and regeneration. Eur Surg Res, 49(1), 35-43. https://doi.org/10.1159/000339613
Reiss, M. J., Han, Y. P., Garcia, E., Goldberg, M., Yu, H., & Garner, W. L. (2010). Matrix metalloproteinase-9 delays wound healing in a murine wound model. Surgery, 147(2), 295-302. https://doi.org/10.1016/j.surg.2009.10.016
Russell, D. G., Huang, L., & VanderVen, B. C. (2019). Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol, 19(5), 291-304. https://doi.org/10.1038/s41577-019-0124-9
Schilrreff, P., & Alexiev, U. (2022). Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci, 23(9). https://doi.org/10.3390/ijms23094928
Sindrilaru, A., & Scharffetter-Kochanek, K. (2013). Disclosure of the Culprits: Macrophages-Versatile Regulators of Wound Healing. Adv Wound Care (New Rochelle), 2(7), 357-368. https://doi.org/10.1089/wound.2012.0407
Spanheimer, R. G., Umpierrez, G. E., & Stumpf, V. (1988). Decreased collagen production in diabetic rats. Diabetes, 37(4), 371-376. https://doi.org/10.2337/diab.37.4.371
Spranger, J., Kroke, A., Mohlig, M., Hoffmann, K., Bergmann, M. M., Ristow, M., Boeing, H., & Pfeiffer, A. F. (2003). Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 52(3), 812-817. https://doi.org/10.2337/diabetes.52.3.812
Szondy, Z., & Pallai, A. (2017). Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications. Pharmacol Res, 115, 124-132. https://doi.org/10.1016/j.phrs.2016.11.025
Tracy, L. E., Minasian, R. A., & Caterson, E. J. (2016). Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle), 5(3), 119-136. https://doi.org/10.1089/wound.2014.0561
Verma, P. K., Bala, M., Kumar, N., & Singh, B. (2012). Therapeutic potential of natural products from terrestrial plants as TNF-alpha antagonist. Curr Top Med Chem, 12(13), 1422-1435. https://doi.org/10.2174/156802612801784425
Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis, 9(2), 119. https://doi.org/10.1038/s41419-017-0135-z
Wang, P., Wang, S., Wang, D., Li, Y., Yip, R. C. S., & Chen, H. (2024). Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol, 274(Pt 1), 133195. https://doi.org/10.1016/j.ijbiomac.2024.133195
Weinelt, N., Karathanasis, C., Smith, S., Medler, J., Malkusch, S., Fulda, S., Wajant, H., Heilemann, M., & van Wijk, S. J. L. (2021). Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFalpha-induced NF-kB signaling. J Leukoc Biol, 109(2), 363-371. https://doi.org/10.1002/JLB.2AB0420-572RR
Wing, R. R., Marcus, M. D., Epstein, L. H., & Salata, R. (1987). Type II diabetic subjects lose less weight than their overweight nondiabetic spouses. Diabetes Care, 10(5), 563-566. https://doi.org/10.2337/diacare.10.5.563
Xiao, S., Wei, T., Petersen, J. D., Zhou, J., & Lu, X. (2023). Biological effects of negative air ions on human health and integrated multiomics to identify biomarkers: a literature review. Environ Sci Pollut Res Int, 30(27), 69824-69836. https://doi.org/10.1007/s11356-023-27133-8
Xu, G. M., Shi, X. M., Cai, J. F., Chen, S. L., Li, P., Yao, C. W., Chang, Z. S., & Zhang, G. J. (2015). Dual effects of atmospheric pressure plasma jet on skin wound healing of mice. Wound Repair Regen, 23(6), 878-884. https://doi.org/10.1111/wrr.12364
Xu, J., Wu, W., Zhang, L., Dorset-Martin, W., Morris, M. W., Mitchell, M. E., & Liechty, K. W. (2012). The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes, 61(11), 2906-2912. https://doi.org/10.2337/db12-0145
Yao, Y., Xu, X. H., & Jin, L. (2019). Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol, 10, 792. https://doi.org/10.3389/fimmu.2019.00792
Yunna, C., Mengru, H., Lei, W., & Weidong, C. (2020). Macrophage M1/M2 polarization. Eur J Pharmacol, 877, 173090. https://doi.org/10.1016/j.ejphar.2020.173090
Zhang, Y., & Zhou, H. (2022). Hyper-reactive platelets and type 2 diabetes. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 47(3), 374-383. https://doi.org/10.11817/j.issn.1672-7347.2022.210271 (高敏性血小板与2型糖尿病.)
Zolkiewicz, https://doi.org/10.3390/nu12082189 J., Marzec, A., Ruszczynski, M., & Feleszko, W. (2020). Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients, 12(8).