研究生: |
蔡博翔 Tsai, Po-Hsiang |
---|---|
論文名稱: |
下肢外骨骼機器人輔助人體跨步平衡控制 Stepping Balance Control through Assistance of a Lower-Limb Exoskeleton Robot |
指導教授: |
陳俊達
Chen, Chun-Ta |
口試委員: |
陳俊達
Chen, Chun-Ta 林志哲 Lin, Chih-Jer 陳金聖 Chen, Chin-Sheng |
口試日期: | 2023/01/11 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 下肢外骨骼機器人 、跨步平衡 、PID控制 、滑模模糊控制 |
英文關鍵詞: | Lower-Limb exoskeleton robot, Stepping balance, PID Control, Fuzzy Sliding Mode Control |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300190 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文「下肢外骨骼機器人輔助人體跨步平衡控制」旨在設計一下肢外骨骼機器人在人體受到較大外力撞擊時能輔助人體跨出步伐以維持平衡。本文利用足底壓力感測器量測人體之足底壓力中心(Center of Pressure, CoP)位置及大小,並以此作為是否進行跨步平衡之依據。安裝於下肢外骨骼機器人之感測器及編碼器則用來計算外骨骼之姿態,並藉由線性倒單擺模型推導出能使人體平衡之跨步位置捕獲點(Capture Point, CP),再透過人工勢場(Artificial potential field)設計運動軌跡及使用逆運動學將末端點運動軌跡轉換為各關節之角度。控制器以計算出之角度與實際角度間之誤差作為控制輸入,使用PID控制及滑模模糊控制(Fuzzy Sliding Mode Control, FSMC)並探討其效果,最後穿戴於正常人與輕度帕金森氏症患者並輔助其受到外力干擾後的跨步平衡。
The main purpose of this thesis “Stepping Balance Control through Assistance of a Lower-Limb Exoskeleton Robot” aims to design a lower-limb exoskeleton robot that can assist the human body to take a step for maintaining balance when hitting with a large external force. In this thesis, the plantar pressure sensor is used to measure the position and size of the Center of Pressure (CoP) of the human body, which is used as the basis for taking step to maintain balance. Sensors and Encoders on the lower-limb exoskeleton robot are used to calculate the attitude of the exoskeleton. Linear Inverted Pendulum Model is used to derive the Capture Point (CP), and design a trajectory through Artificial Potential Field, then uses Inverse Kinematics to convert the design trajectory into the angle of each joint. The PID control and Fuzzy Sliding Mode Control (FSMC) are selected as controllers and dicuss its effect. Finally, normal people and patients with Parkinson's disease wears the lower-limb exoskeleton to assist their stepping balance after being disturbed by external forces.
[1] WHO Global Health Estimates (2014), https://www.who.int/data/global-health-estimates
[2] Winter, D.A., “Human balance and posture control during walking”, Gait and Posture 3, pp.193-214, 1995.
[3] A.L. Hof, M.G.J. Gazendam, W.E. Sinke, “The condition for dynamic stability”, Journal of Biomechanics 38, 1–8, 2005.
[4] Benjamin Stephens, “Humanoid push recovery”, 7th IEEE-RAS International Conference on Humanoid Robots, 2007
[5] Che-Hsuan Chang, Han-Pang Huang, Huan-Kun Hsu, Ching-An Cheng, “Humanoid robot push-recovery strategy based on CMP criterion and angular momentum regulation”, IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2015
[6] Jerry Pratt, John Carff, Sergey Drakunov, Ambarish Goswami, “Capture Point: A Step toward Humanoid Push Recovery”, 6th IEEE-RAS International Conference on Humanoid Robots, 2006.
[7] Awais Yasin, Qiang Huang, Qian Xu, M. Saad Sultan, “Humanoid robot push recovery through foot placement”, IEEE International Conference on Mechatronics and Automation, 2012.
[8] Mingguo Zhao, Siyuan Yu, “Push recovery by stepping with step timing adjustment”, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017.
[9] Wei Yu, Gang Bao, Zuwen Wang, “Effects of Joint Torque Constraints on Humanoid Robot Balance Recovery in the Presence of External Disturbance”, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009.
[10] Ildar Farkhatdinov, Julia Ebert, Gijs van Oort, Mark Vlutters, Edwin van Asseldonk, Etienne Burdet, “Assisting Human Balance in Standing With a Robotic Exoskeleton”, IEEE Robotics and Automation Letters, 4(2), April 2019.
[11] Chih-Cheng Liu, Tsu-Tian Lee, Sheng-Ru Xiao, Yi-Chung Lin, Yi-Yang Lin, Ching-Chang Wong, “Real-Time FPGA-Based Balance Control Method for a Humanoid Robot Pushed by External Forces” Applied Sciences, 10(8), pp.2699, 2020.
[12] Lufeng Luo, Hanjin Wen, Qinghua Lu, Haojie Huang, Weilin Chen, Xiangjun Zou, Chenglin Wang, “Collision-Free Path-Planning for Six-DOF Serial Harvesting Robot Based on Energy Optimal and Artificial Potential Field”, Complexity, vol. 2018, November 2018.
[13] Qingni Yuan, Junhui Yi, Ruitong Sun, Huan Bai, “Path Planning of a Mechanical Arm Based on an Improved Artificial Potential Field and a Rapid Expansion Random Tree Hybrid Algorithm”, Algorithms, 14(11), pp.321, 2021.
[14] J.G. Ziegler, N.B. Nichols, “Optimum settings for automatic controllers”, Transactions of the ASME, 64, pp.759-768, 1942.
[15] Shuchao Cao, Jun Zhang, Weiguo Song, Chang’an Shi , Ruifang Zhang, “The stepping behavior analysis of pedestrians from different age groups via a single-file experiment”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2018, March 2018.
[16] A.L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking”, Human Movement Science ,27(1), pp.112-125, February 2008.
[17] 巴金森氏症之照護_北榮醫護,https://ihealth.vghtpe.gov.tw/media/506