研究生: |
吳韋霆 Wu, Wei-Ting |
---|---|
論文名稱: |
介電質空氣光譜-微小化氣相層析偵測器 Dielectric Barrier Discharge Emission Spectrometer for Micro Gas Chromatograph Detector |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 介電質放電 、常壓電漿 、氣相層析 、發射光譜 |
英文關鍵詞: | Dielectric barrier discharge, Atmospheric plasma, Gas chromatography, Emission spectrometry |
DOI URL: | https://doi.org/10.6345/NTNU202204488 |
論文種類: | 學術論文 |
相關次數: | 點閱:108 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功研發微小化介電質放電電漿裝置,並應用於氣體偵測,此電漿氣體偵測器的內電極為不鏽鋼毛細管,外電極則為銅線,並利用玻璃管同時做為氣體通道以及介電質製作而成。在兩端電極連接高壓產生器,施加電壓8~10 kVp-p、頻率63 kHz正弦波形的交流電源,可在常壓環境下形成穩定的電漿,本裝置的電漿放電體積約為1100 nL。本研究以空氣做為載流氣體進行測試,可以成功產生電漿並實際用於偵測有機化合物,當有機揮發性氣體通過電漿區域時,有機物會增強空氣電漿的放光強度,以光譜儀偵測發射光譜在380 ± 2 nm區間的光譜變化,會有明顯的光譜訊號產生。本研究也進一步探討流速、電壓、採樣袋氣體與訊號反應之間的關係,空氣電漿對於烷類、醇類、酮類、酯類、芳香族及鹵化物等各種官能基的有機氣體通過時,皆可在光譜儀上看到類似的訊號反應,而且反應性訊號會隨著有機氣體碳鏈長度的增加而增強發射光譜的訊號強度。本研究的實驗裝置偵測極限對propanol可達到1.57 ng,此裝置具備微小化、價格低廉、不耗損電極、可使用空氣做為載流氣體與高靈敏度等優點。
We successfully developed a micro dielectric barrier discharge (DBD) plasma device, which can be used as a gas chromatographic detector. A stainless steel capillary was employed as the inner electrode of the micro plasma device and the copper wire was wound tightly outside the device as the outer electrode. The stable atmospheric DBD plasma can be generate when we apply a high-voltage alternative current (AC), which is a sine waveform, 8~10 kVp-p and 63 kHz frequency, to the electrodes of the plasma device. The volume of plasma discharge region was about 1100 nL. In this study¸ air was used as carrier gas of the gas chromatography, the air DBD plasma was generated successfully and can be applied at total organic carbons (TOCs) detection. The volatile organic compounds react with plasma and strengthen the air plasma spectrum. The spectrometer will detect the increase at 380±2 nm when organic compounds pass through the plasma region. The study further investigates the correlation of voltage, flow rate, and the background gas in tedlar bags to detector response. The air plasma spectrum will be strengthened when volatile organic compounds, such as alkane, alcohols, ketones, esters, aromatic compounds and halides of various functional groups, pass through the plasma region. And the emission spectrum intensity increase when the length of alkanes carbon chain. The estimated limit of detection (LOD) was 1.57 ng for iso-propanol. This micro plasma device is an extremely small, cheap, no electrode erosion, and can operate under air with high sensitivity.
1. 賴耿陽,電漿工學的基礎,第一章,復文書局,2002。
2. 曾煥華,電漿的世界,第一章,銀禾文化事業有限公司,台北台灣,1987。
3. 莊達人,VLSI製造技術,高立出版社。
4. Crookes, W.; Phil. Trans. R. Soc. Lond. 1879, 170, 135-164
5. Cohn, D. R. Plasma Science and the Environment. Chap 9, Manheimer W., Sugiyama L. E., Stix T. H., (editors) (AIP Press-American Institute of Physics, Woodbury, New York), 1996.
6. Lieberman, M. A.; Lichtenberg, A. J. Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.
7. Lucas, J. R. High Voltage Engineering, Chap 1, 2001
8. Wadhwa, C. L. High Voltage Engineering (2nd ed.), New Age International. , 2007
9. Fauchais, P.; Vardelle, A. Plasma Phys. Controlled Fusion 2000, 42, B365-B383.
10. Gomez, E.; Rani, D. A.; Cheeseman C. R.; Deeganc, D.; Wisec, M.; Boccaccinia A. R.; J. Hazard. Mater. 2009, 161, 614-626.
11. Chang, J. S.; Lawless, P. A.; Yamamoto, T. IEEE transaction on plasma science 1991, 19(6), 1152-1166
12. Eliasson, B.; Kogeschatz, U. IEEE transaction on plasma science 1991, 19(6), 1063-1077
13. Elenhaas, W.; Light Sources (Plilips Technical Library). London, UK:Macmillan, 1972.
14. Boulos, M.I. IEEE transaction on plasma science 1991, 19(6), 1078-1089
15. J. R. Hollahan and A. T. Bell, Eds., Techniques and Applications of Plasma Chemistry. New York: Wiley, 1974.
16. Siemens, W.; Poggendorffs Ann. Phys. Chem. 1857, 102, 66.
17. Andrews, T.; Tait, P. G. Phil. Trans. Roy. Soc. 1860, 150, 113
18. Meyer, C.; Meuller, S.; Gurevich, E. L.; Franzke, J. Analyst 2011, 136, 2427.
19. Guikema, J.; Miller, N.; Niehof, J.; Klein, M.; Walhout, M. Phys. Rev. Lett. 2000, 85, 3817-3820.
20. Harley, J.; Pretorius, V. Nature 1956, 178, 1244.
21. Pitkethly, R. C. Anal. Chem. 1958, 8, 1309.
22. Lovelock, J. E. Nature 1958, 182, 1663.
23. Lovelock, J. E.; Lipsky, S. K. J. Am. Chem. Soc. 1960, 82(2), 431-433.
24. Lovelock, J. E. Nature 1960, 187, 49.
25. Braman, R. S.; Dynako Y. Anal. Chem. 1968, 40, 95.
26. Kuzuya, M.; Piepmeier, E. H. Anal. Chem. 1991, 63, 1763.
27. Zhu, Z.; Piepmeier, E. H. Spectrochim. Acta. Part B 1994, 49, 1787.
28. Petrovic, Z. Lj.; Phelps, A. V. Phys. Rev. E 1993, 47, 2806
29. Jelenkovic, B. M.; Rozsa, K.; Phelps, A. V. Phys. Rev. E 1993, 47, 2816.
30. Phelps, A. V.; Petrovic, Z. L.; Jelenkovic, B. M. Phys. Rev. E 1993, 47, 2825-2838.
31. Wentworth, W. E.; Cai, H.;Stearns, S. J. Chromatogr. A 1994, 688, 135.
32. Smith, D.; Piepmeier, E. H. Anal. Chem. 1994, 66, 1323.
33. Smith, D.; Piepmeier, E. H. Anal. Chem. 1995, 67, 1084.
34. Herring, C. J.; Piepmeier, E. H. Anal. Chem. 1995, 67, 878.
35. Maeng, D. Y.; You, S. Y.; Cha, B. C.; Kim, H. Microchem. J. 1997, 55, 88.
36. Huang, D. G.; Liang, D. C.; Blades, M. W. J. Anal. At. Spectrom. 1989, 4, 789.
37. Puig, L.; Sacks, R. Appl. Spectrosc. 1989, 43, 801.
38. Ng, K. C.; Ali, A. H.; Winefordner, J. D. Spectrochim. Acta. Part B 1991, 46, 309.
39. Pereiro, R.; Starn, T. K.; Hieftje, G. M. Appl. Spectrosc. 1995, 49, 616.
40. Olson, L. K.; Belkin, M.; Caruso, J. A. J. Anal. At. Spectrom. 1996, 11, 491.
41. Eijkel, J. C. T.; Stoeri, H.; Manz, A. Anal. Chem. 1999, 71, 2600.
42. Eijkel, J. C. T.; Stoeri, H.; Manz, A. Anal. Chem. 2000, 72, 2547.
43. Bessoth, F. G.; Naji, O. P.; Eijkel, J. C. T.; Manz, A. J. Anal. At. Spectrom. 2002, 17, 794.
44. Novák, P.; Dědina, J.; Kratzer, J. Anal. Chem. 2016, 88, 6064
45. Kratzer, J.; Zelina, O.; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina J. Anal. Chem. 2014, 86, 9620
46. Kratzer, J.; Zelina, O.; Svoboda, M.; Sturgeon, R. E.; Mester, Z.; Dědina J. Anal. Chem. 2016, 88, 1804
47. Schütz, A.; Brandt, S.; Liedtke, S.; Foest, D.; Marggraf, U.; Franzke J. Anal. Chem. 2015, 87, 11415
48. Li, W.; Zheng, C.; Fan, G.; Li Tang, Xu, K.; Lv, Y.; Hou, X. Anal. Chem. 2011, 83, 5050
49. Han, B.; Jiang, X.; Hou, X.; Zheng C. Anal. Chem. 2014, 86 , 936
50. Han, B.; Jiang, X.; Hou, X.; Zheng, C. Anal. Chem. 2014, 86, 6214
51. Timmermans, E. A. H.; Jonkers, J.; Rodero, A.; Quintero, M.C.; Sola, A.; Gamero, A.; Schram, D.C.; Mullen, V. D.; Spectrochim. Acta Part B, 1999, 54, 1085
52. Harilal, S. S.; Issac, R. C.; Bindhu, C. V.; Gopinath, P.; Nampoori, V. P. N.; Vallabhan, C. P. G. Spectrochim. Acta. Part A 1997, 53, 1527.
53. Duan, Y.; Su, Y.; Jin, Z. Rev. Sci. Instrum. 2003, 74, 2811.
54. Amry, A. M. A.; Law, V. J.; Boyd, I. W. Chin. Phys. Lett. 2012, 29(5), 055201.
55. Guchardi, R.; Hauser, P. C. J. Anal. At. Spectrom. 2003, 18, 1056.
56. 洪德裕,微小化介電質氮氣電漿放射光譜應用於氣相層析偵測器之研製,國立師範大學化學研究所碩士論文,2013。
57. Zhang, S.; Wang, W.; Yang, D.; Jia, L. IEEE transaction on plasma science 2012, 40(9), 2191-2197
58. Kogelschatz, U. Plasma Chemistry and Plasma Processing. 2003, 23(1), 1-46
59. Wagenaars, E.; Brandenburg, R.; Brok, W. J. M.; Bowden, M. D.; Wagner, H. J. Phys. D: Appl. Phys. , 2006, 39, 700–711