簡易檢索 / 詳目顯示

研究生: 吳韋霆
Wu, Wei-Ting
論文名稱: 介電質空氣光譜-微小化氣相層析偵測器
Dielectric Barrier Discharge Emission Spectrometer for Micro Gas Chromatograph Detector
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 介電質放電常壓電漿氣相層析發射光譜
英文關鍵詞: Dielectric barrier discharge, Atmospheric plasma, Gas chromatography, Emission spectrometry
DOI URL: https://doi.org/10.6345/NTNU202204488
論文種類: 學術論文
相關次數: 點閱:108下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功研發微小化介電質放電電漿裝置,並應用於氣體偵測,此電漿氣體偵測器的內電極為不鏽鋼毛細管,外電極則為銅線,並利用玻璃管同時做為氣體通道以及介電質製作而成。在兩端電極連接高壓產生器,施加電壓8~10 kVp-p、頻率63 kHz正弦波形的交流電源,可在常壓環境下形成穩定的電漿,本裝置的電漿放電體積約為1100 nL。本研究以空氣做為載流氣體進行測試,可以成功產生電漿並實際用於偵測有機化合物,當有機揮發性氣體通過電漿區域時,有機物會增強空氣電漿的放光強度,以光譜儀偵測發射光譜在380 ± 2 nm區間的光譜變化,會有明顯的光譜訊號產生。本研究也進一步探討流速、電壓、採樣袋氣體與訊號反應之間的關係,空氣電漿對於烷類、醇類、酮類、酯類、芳香族及鹵化物等各種官能基的有機氣體通過時,皆可在光譜儀上看到類似的訊號反應,而且反應性訊號會隨著有機氣體碳鏈長度的增加而增強發射光譜的訊號強度。本研究的實驗裝置偵測極限對propanol可達到1.57 ng,此裝置具備微小化、價格低廉、不耗損電極、可使用空氣做為載流氣體與高靈敏度等優點。

    We successfully developed a micro dielectric barrier discharge (DBD) plasma device, which can be used as a gas chromatographic detector. A stainless steel capillary was employed as the inner electrode of the micro plasma device and the copper wire was wound tightly outside the device as the outer electrode. The stable atmospheric DBD plasma can be generate when we apply a high-voltage alternative current (AC), which is a sine waveform, 8~10 kVp-p and 63 kHz frequency, to the electrodes of the plasma device. The volume of plasma discharge region was about 1100 nL. In this study¸ air was used as carrier gas of the gas chromatography, the air DBD plasma was generated successfully and can be applied at total organic carbons (TOCs) detection. The volatile organic compounds react with plasma and strengthen the air plasma spectrum. The spectrometer will detect the increase at 380±2 nm when organic compounds pass through the plasma region. The study further investigates the correlation of voltage, flow rate, and the background gas in tedlar bags to detector response. The air plasma spectrum will be strengthened when volatile organic compounds, such as alkane, alcohols, ketones, esters, aromatic compounds and halides of various functional groups, pass through the plasma region. And the emission spectrum intensity increase when the length of alkanes carbon chain. The estimated limit of detection (LOD) was 1.57 ng for iso-propanol. This micro plasma device is an extremely small, cheap, no electrode erosion, and can operate under air with high sensitivity.

    摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1-1前言 1 1-2 電漿性質分類及比較 3 1-2-1 不同氣壓下的電漿性質比較 3 1-2-2 不同溫度的電漿性質比較 11 1-3 介電質放電電漿 16 1-4 電漿在分析化學領域的應用 20 1-5 電漿游離機制 22 第二章 實驗部分 25 2-1 實驗藥品、器材與儀器設備 25 2-1-1 實驗藥品 25 2-1-2 實驗器材 27 2-1-3 儀器設備 28 2-2 電漿偵測器的製作 29 2-3 LabVIEW程式撰寫 33 2-4 樣品配製與高壓電源量測 38 2-4-1 氣體採樣袋的樣品配製 38 2-4-2 高壓電源的量測 40 2-5 實驗系統的組裝與測量 42 第三章 結果與討論 44 3-1 不同載流氣體對電漿的影響 44 3-2空氣電漿光譜分析 50 3-2-1 有機樣品通過電漿的光譜變化 50 3-2-2 採樣袋氣體對光譜的影響 55 3-3 流速對電漿訊號的影響 57 3-4 電壓大小對電漿訊號的影響 62 3-5 空氣電漿的穩定性及訊號再現性 67 3-6 以空氣光譜分析混合有機氣體 70 3-7 電漿偵測器與火焰離子偵測器對化合物反應性的比較 75 3-7-1 不同碳數烷類反應性比較 75 3-7-2 不同官能基化合物反應性比較 79 3-8 電漿反應機制的探討 81 第四章 結論 85 參考文獻 86

    1. 賴耿陽,電漿工學的基礎,第一章,復文書局,2002。
    2. 曾煥華,電漿的世界,第一章,銀禾文化事業有限公司,台北台灣,1987。
    3. 莊達人,VLSI製造技術,高立出版社。
    4. Crookes, W.; Phil. Trans. R. Soc. Lond. 1879, 170, 135-164
    5. Cohn, D. R. Plasma Science and the Environment. Chap 9, Manheimer W., Sugiyama L. E., Stix T. H., (editors) (AIP Press-American Institute of Physics, Woodbury, New York), 1996.
    6. Lieberman, M. A.; Lichtenberg, A. J. Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.
    7. Lucas, J. R. High Voltage Engineering, Chap 1, 2001
    8. Wadhwa, C. L. High Voltage Engineering (2nd ed.), New Age International. , 2007
    9. Fauchais, P.; Vardelle, A. Plasma Phys. Controlled Fusion 2000, 42, B365-B383.
    10. Gomez, E.; Rani, D. A.; Cheeseman C. R.; Deeganc, D.; Wisec, M.; Boccaccinia A. R.; J. Hazard. Mater. 2009, 161, 614-626.
    11. Chang, J. S.; Lawless, P. A.; Yamamoto, T. IEEE transaction on plasma science 1991, 19(6), 1152-1166
    12. Eliasson, B.; Kogeschatz, U. IEEE transaction on plasma science 1991, 19(6), 1063-1077
    13. Elenhaas, W.; Light Sources (Plilips Technical Library). London, UK:Macmillan, 1972.
    14. Boulos, M.I. IEEE transaction on plasma science 1991, 19(6), 1078-1089
    15. J. R. Hollahan and A. T. Bell, Eds., Techniques and Applications of Plasma Chemistry. New York: Wiley, 1974.
    16. Siemens, W.; Poggendorffs Ann. Phys. Chem. 1857, 102, 66.
    17. Andrews, T.; Tait, P. G. Phil. Trans. Roy. Soc. 1860, 150, 113
    18. Meyer, C.; Meuller, S.; Gurevich, E. L.; Franzke, J. Analyst 2011, 136, 2427.
    19. Guikema, J.; Miller, N.; Niehof, J.; Klein, M.; Walhout, M. Phys. Rev. Lett. 2000, 85, 3817-3820.
    20. Harley, J.; Pretorius, V. Nature 1956, 178, 1244.
    21. Pitkethly, R. C. Anal. Chem. 1958, 8, 1309.
    22. Lovelock, J. E. Nature 1958, 182, 1663.
    23. Lovelock, J. E.; Lipsky, S. K. J. Am. Chem. Soc. 1960, 82(2), 431-433.
    24. Lovelock, J. E. Nature 1960, 187, 49.
    25. Braman, R. S.; Dynako Y. Anal. Chem. 1968, 40, 95.
    26. Kuzuya, M.; Piepmeier, E. H. Anal. Chem. 1991, 63, 1763.
    27. Zhu, Z.; Piepmeier, E. H. Spectrochim. Acta. Part B 1994, 49, 1787.
    28. Petrovic, Z. Lj.; Phelps, A. V. Phys. Rev. E 1993, 47, 2806
    29. Jelenkovic, B. M.; Rozsa, K.; Phelps, A. V. Phys. Rev. E 1993, 47, 2816.
    30. Phelps, A. V.; Petrovic, Z. L.; Jelenkovic, B. M. Phys. Rev. E 1993, 47, 2825-2838.
    31. Wentworth, W. E.; Cai, H.;Stearns, S. J. Chromatogr. A 1994, 688, 135.
    32. Smith, D.; Piepmeier, E. H. Anal. Chem. 1994, 66, 1323.
    33. Smith, D.; Piepmeier, E. H. Anal. Chem. 1995, 67, 1084.
    34. Herring, C. J.; Piepmeier, E. H. Anal. Chem. 1995, 67, 878.
    35. Maeng, D. Y.; You, S. Y.; Cha, B. C.; Kim, H. Microchem. J. 1997, 55, 88.
    36. Huang, D. G.; Liang, D. C.; Blades, M. W. J. Anal. At. Spectrom. 1989, 4, 789.
    37. Puig, L.; Sacks, R. Appl. Spectrosc. 1989, 43, 801.
    38. Ng, K. C.; Ali, A. H.; Winefordner, J. D. Spectrochim. Acta. Part B 1991, 46, 309.
    39. Pereiro, R.; Starn, T. K.; Hieftje, G. M. Appl. Spectrosc. 1995, 49, 616.
    40. Olson, L. K.; Belkin, M.; Caruso, J. A. J. Anal. At. Spectrom. 1996, 11, 491.
    41. Eijkel, J. C. T.; Stoeri, H.; Manz, A. Anal. Chem. 1999, 71, 2600.
    42. Eijkel, J. C. T.; Stoeri, H.; Manz, A. Anal. Chem. 2000, 72, 2547.
    43. Bessoth, F. G.; Naji, O. P.; Eijkel, J. C. T.; Manz, A. J. Anal. At. Spectrom. 2002, 17, 794.
    44. Novák, P.; Dědina, J.; Kratzer, J. Anal. Chem. 2016, 88, 6064
    45. Kratzer, J.; Zelina, O.; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina J. Anal. Chem. 2014, 86, 9620
    46. Kratzer, J.; Zelina, O.; Svoboda, M.; Sturgeon, R. E.; Mester, Z.; Dědina J. Anal. Chem. 2016, 88, 1804
    47. Schütz, A.; Brandt, S.; Liedtke, S.; Foest, D.; Marggraf, U.; Franzke J. Anal. Chem. 2015, 87, 11415
    48. Li, W.; Zheng, C.; Fan, G.; Li Tang, Xu, K.; Lv, Y.; Hou, X. Anal. Chem. 2011, 83, 5050
    49. Han, B.; Jiang, X.; Hou, X.; Zheng C. Anal. Chem. 2014, 86 , 936
    50. Han, B.; Jiang, X.; Hou, X.; Zheng, C. Anal. Chem. 2014, 86, 6214
    51. Timmermans, E. A. H.; Jonkers, J.; Rodero, A.; Quintero, M.C.; Sola, A.; Gamero, A.; Schram, D.C.; Mullen, V. D.; Spectrochim. Acta Part B, 1999, 54, 1085
    52. Harilal, S. S.; Issac, R. C.; Bindhu, C. V.; Gopinath, P.; Nampoori, V. P. N.; Vallabhan, C. P. G. Spectrochim. Acta. Part A 1997, 53, 1527.
    53. Duan, Y.; Su, Y.; Jin, Z. Rev. Sci. Instrum. 2003, 74, 2811.
    54. Amry, A. M. A.; Law, V. J.; Boyd, I. W. Chin. Phys. Lett. 2012, 29(5), 055201.
    55. Guchardi, R.; Hauser, P. C. J. Anal. At. Spectrom. 2003, 18, 1056.
    56. 洪德裕,微小化介電質氮氣電漿放射光譜應用於氣相層析偵測器之研製,國立師範大學化學研究所碩士論文,2013。
    57. Zhang, S.; Wang, W.; Yang, D.; Jia, L. IEEE transaction on plasma science 2012, 40(9), 2191-2197
    58. Kogelschatz, U. Plasma Chemistry and Plasma Processing. 2003, 23(1), 1-46
    59. Wagenaars, E.; Brandenburg, R.; Brok, W. J. M.; Bowden, M. D.; Wagner, H. J. Phys. D: Appl. Phys. , 2006, 39, 700–711

    下載圖示
    QR CODE