研究生: |
鄭博文 Cheng, Po-Wen |
---|---|
論文名稱: |
基於嵌入式系統的深度學習應用之研究—以人臉辨識為例 Deep Learning Applications Based on Embedded Systems — Face Recognition as an Example |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 嵌入式系統 、深度學習 、人臉辨識 |
英文關鍵詞: | LeNet-5, Raspberry Pi, PYNQ-Z2 |
DOI URL: | http://doi.org/10.6345/NTNU201900568 |
論文種類: | 學術論文 |
相關次數: | 點閱:238 下載:61 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的是開發出基於嵌入式系統的深度學習架構,並以人臉辨識作為主要應用的例子。首先嵌入式平台的選擇為Raspberry Pi與PYNQ-Z2,而在深度學習的架構上,使用較簡單的LeNet-5神經網路模型,並透過臉部偵測的前處理方式降低問題難程度,以利在嵌入式平台上實現LeNet-5的人臉辨識系統。
而在整合的工具上,以Python為主要的系統整合語言,利用Python的高整合性將深度學習、周邊感測器、設備和FPGA硬體設計整合至嵌入式系統內。並在Raspberry Pi與PYNQ-Z2兩種嵌入式平台以Python完成以下四點功能:影像的拍攝與擷取、臉部偵測、以深度學習實現人臉辨識、結果的顯示,在此之上建立具有標準化且能夠real-time即時回饋的人臉辨識系統。
[1] Bill Lubanovic, Introducing Python, Oreilly & Associates Inc, 2014.
[2] “Picamera,” [Online]. Available: https://picamera.readthedocs.io/. [Accessed Dec. 10, 2018].
[3] 陳會安, Raspberry Pi 樹莓派 - 從不懂,到玩上手!, 旗標出版社, 2017.
[4] “PYNQ: Python productivity for Zynq,” [Online]. Available: http://www.pynq.io/. [Accessed Feb. 15, 2019].
[5] Adrian Kaehler, Gary Bradski, Learning OpenCV 3, Oreilly & Associates Inc, 2017.
[6] “Keras Documentation,” [Online]. Available: https://keras.io/. [Accessed Oct. 21, 2018].
[7] P. Viola and M. Jones, “Robust Real-Time Face Detection,” Int’l J. Computer Vision, vol. 57, no. 2, pp. 137-154, May 2004.
[8] R. Lienhart and J. Maydt, "An extended set of Haar-like features for rapid object detection," Proceedings. International Conference on Image Processing, Rochester, NY, USA, 2002, pp. I-I.
[9] H. Jiang and E. Learned-Miller. Face detection with the faster r-cnn. arXiv preprint arXiv:1606.03473, 2016.
[10] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
[11] S. Lin, L. Cai, and R. Ji, “Masked face detection via a modified LeNet,” Neurocomputing, vol. 218, pp. 197–202, Dec. 2016.
[12] 王雅慶, “以FPGA實現摺積神經網路及應用於人臉特徵辨識之研究,” 國立台灣師範大學, 2016.
[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1106–1114.
[14] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1-9.
[15] “CS231n Convolutional Neural Networks for Visual Recognition,” [Online]. Available: http://cs231n.github.io/convolutional-networks/. [Accessed Noc. 11, 2018].
[16] 謝斯宇, “基於臉部偵測及CNN模型之硬體臉部辨識系統,” 國立台灣師範大學, 2019.