簡易檢索 / 詳目顯示

研究生: 陳鳳宜
論文名稱: 奈米金表面電漿共振原理應用於中空光纖式氣相層析偵測器之研製
指導教授: 呂家榮
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 奈米金表面電漿共振氣相層析偵測器
英文關鍵詞: gold nanoparticles, surface plasmon resonance, GC-detector
論文種類: 學術論文
相關次數: 點閱:284下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將中空光纖感測器串聯於氣相層析儀作為新型態有機揮發性氣體(Volatile Organic Compounds;VOCs)感測器。其原理乃利用奈米金屬粒子吸附有機氣體分子會造成局部性表面電漿共振(Localized Surface Plasmon Resonance;LSPR)光譜改變。本實驗所製備的奈米金粒子是利用檸檬酸鈉將四氯金酸(HAuCl4)還原成金原子,藉由自組裝薄膜反應機制將奈米金粒子修飾於中空光纖內層表面,其修飾劑為含有胺基(-NH2)的APTMS。將此感測器串聯於氣相層析儀,藉由綠光二極體(LED)提供一固定光源,穿過中空光纖管壁至另一端由綠光感測器所接收,當有機氣體流經層析管柱分離後,會被中空光纖表面的奈米金粒子所吸附而導致光強度有所變化,並利用雙低通濾波來提升綠光感測器之訊雜比及補償訊號飄移問題。此感測器成功地測試了十種混合有機氣體,結果顯示訊號反應迅速且具有良好的穩定性以及線性關係(R2≧0.99),其偵測下限範圍可達60 ~ 185 ng,此偵測下限值比以往文獻中利用表面電漿共振原理來感測氣體還低。在未來的發展可將此奈米金中空光纖式表面電漿共振感測器應用於微小化氣相層析儀。

    This research reports a novel optical hollow fiber device as a gas chromatographic detector for volatile organic compounds (VOCs). The detection is based on molecular adsorbed on the nanoparticle surface causing shifts in the localized surface plasmon resonance (LSPR) spectral peak. In this work, the sensing materials using gold nanoparticles were prepared via sodium citrate reduction of hydrogen tetrachlororaurate (HAuCl4). The gold nanoparticles were coated on the inner surface of optical hollow fiber by the self-assembled reaction between gold nanoparticles and surface amino groups (APTMS). The detection system was constructed on a bench-scale GC equipped with a separation column that was connected to the device, the light emitting diode (LED) as an light source and the light was passed through the wall of optical hollow fiber, when VOCs from GC column elutes through the optical hollow fiber, the gas molecules were adsorbed on gold nanoparticles caused changing the intensity of the light power transmitted. A green sensor was used to measure the intensity changes of light. A dual low-pass filter circuit was used to enhance signal/noise ratio for the green sensor and automatically compensated the baseline drift. The chromatogram of ten organic vapors plus water peak in background was successfully detected by our new detector. The result indicates that the detector peaks are sharp and responses are rapid, reversible, reproducible and linear (R2≧0.99) for all tested compounds. The limits of detection are ranging from 60 to 185 ng. All detection limit values were lower than that of previously reported gas sensing with LSPR system. This detector presented in this study shows good detection ability and has the potential for future integration with micro-GC system.

    中文摘要----------------------------------------------------i 英文摘要---------------------------------------------------ii 目錄-----------------------------------------------------iii 圖目錄----------------------------------------------------vi 表目錄-----------------------------------------------------x 第一章 緒論 1.1 研究背景------------------------------------------------1 1.2 奈米材料------------------------------------------------3 1.2.1 表面效應----------------------------------------------4 1.2.2 量子尺寸效應------------------------------------------5 1.2.3 奈米金粒子之光學性質-----------------------------------6 1.3 表面電漿共振原理-----------------------------------------9 1.3.1 漸逝波原理--------------------------------------------9 1.3.2 表面電漿波原理---------------------------------------12 1.3.3 表面電漿共振現象--------------------------------------14 1.4 表面電漿共振感測器--------------------------------------16 第二章 實驗部分 2.1 實驗藥品與儀器設備--------------------------------------21 2.1.1 實驗藥品---------------------------------------------21 2.1.2 儀器設備---------------------------------------------23 2.1.3 實驗器材---------------------------------------------25 2.2 奈米金粒子製備方法--------------------------------------27 2.3 奈米金中空光纖感測器製作步驟-----------------------------28 2.3.1 中空光纖的清洗---------------------------------------28 2.3.2 中空光纖外層鍍銀鏡反應--------------------------------28 2.3.3 修飾奈米金粒子於中空光纖內層---------------------------29 2.3.4 奈米金中空光纖感測器之組裝-----------------------------31 2.4 感測器數據處理-----------------------------------------33 2.4.1 UV-Vis吸收光譜數據處理--------------------------------33 2.4.2 光敏電阻與綠光感測器訊號處理---------------------------34 2.5 感測系統架設-------------------------------------------36 2.6 氣體樣品配製-------------------------------------------38 第三章 結果與討論 3.1 奈米金粒子之分析----------------------------------------40 3.2 不同光學感測器測量之探討---------------------------------43 3.3 實驗最佳參數之探討--------------------------------------47 3.3.1 奈米金中空光纖形狀之探討-------------------------------47 3.3.2 光強度對綠光感測器之探討-------------------------------51 3.3.3 奈米金中空光纖外壁包覆層之探討-------------------------54 3.3.4 奈米金中空光纖長度之探討-------------------------------57 3.3.5 載流氣體流速對奈米金中空光纖之影響----------------------62 3.4 相同官能基有機氣體測試----------------------------------66 3.5 奈米金中空光纖感測器再現性測試---------------------------71 3.6 奈米金中空光纖感測器與熱導偵測器比較----------------------72 3.7 奈米金中空光纖在有機氣體下感測之機制探討-------------------77 第四章 結論---------------------------------------------79 參考文獻---------------------------------------------------80 附錄------------------------------------------------------84

    1. 陳昱銓, 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立, 天主教輔仁大學化學研究所碩士論文, 2008
    2. 鍾沛文, 高分子弦振動式氣相層析感測器之原理開發, 國立臺灣師範大學化學系研究所碩士論文, 2011
    3. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes, J. Am. Chem. Soc., 1998, 120, 1959-1964
    4. N. Nath , A. Chilkoti, A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface, Anal. Chem., 2002, 74, 504-509
    5. S. F. Cheng, L. K. Chau, Colloidal Gold-Modified Optical Fiber for Chemical and Biochemical Sensing, Anal. Chem., 2003, 75, 16-21
    6. 簡日昇, 奈米金-阻抗式氣體感測器應用於微機電氣相層析偵測器之研製, 天主教輔仁大學化學研究所碩士論文, 2007
    7. 黃國偉, Fiber-Optic Localized Surface Plasmon Resonance Sensor for Detection of DNA Damage and Cytokines, 國立中正大學化學暨生物化學研究所碩士論文, 2007
    8. 張立德, 奈米材料Nanomaterials, 五南出版社, 2003, 63-81
    9. 南區奈米科技K-12教育發展中心, 奈米科技─基礎、應用與實作Nanotechnology, 高立圖書有限公司, 2005, 35-60
    10. 盧永坤, 奈米科技概論, 滄海書局, 2005, 21-35
    11. 曾賢德, 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作, 物理雙月刊, 第三十二卷, 第二期
    12. K. M. Mayer, J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chem. Rev., 2011, 111, 3828-3857
    13. 蕭義鴻, 以電化學方法製備鐵奈米粒子之研究, 國立中山大學電機工程學系碩士論文, 2005
    14. 林永泰, 利用金奈米粒子修飾光纖製備低價位生化感測器, 國立中正大學化學研究所碩士論文, 2003
    15. 林義芳, 反射式金奈米粒子修飾光纖於生化感測器之研究, 國立中正大學化學工程研究所碩士論文, 2003
    16. 吳民耀, 劉威志, 表面電漿子理論與模擬, 物理雙月刊, 2006, 第二十八卷, 第二期, 486-496
    17. 鄭淑芬, 表面電漿共振感測器, 國立中正大學化學研究所碩士論文, 2004
    18. 王子建, 林文紹, 徐振維, 劉福鯤, 具有雙極性波長檢測能力之新型表面電漿共振生化感測器, 台北科技大學光電工程所, 國家奈米元件實驗室, 奈米通訊, 第十二卷, 第一期
    19. 邱宗凱, 錢正浩, 連偉男, 林奇宏, 全反射螢光顯微術於生物物理的應用,國立台灣大學物理系, 國立陽明大學微免所, 物理雙月刊, 2001, 第二十四卷, 第三期, 436-442
    20. 謝宙耕, 光纖漸逝波生物感測器之開發研製, 國立陽明大學生醫光電工程研究所碩士論文, 2006
    21. 楊吉斯, 漸逝波型紅外光光學化學感測器, 中原大學化學系, Chemistry , 2001, 第五十九卷, 第二期, 59, 245-251
    22. 鄭嘉升, 奈米金屬薄膜表面電漿共振光譜之有機氣體反應特性研究, 天主教輔仁大學化學研究所碩士論文, 2006
    23. B. Pejcic, P. Eadington, A. Ross., Environmental Monitoring of Hydrocarbons: A Chemical Sensor Perspective, Environ. Sci. Technol., 2007, 41, 6333-6342
    24. 李彥飛, 利用奈米金粒子薄膜於比色法檢測重金屬離子, 國立臺灣海洋大學生物科技研究所碩士論文, 2012
    25. T. Morris, K. Kloepper, S. Wilson, G. Szulczewski1, A Spectroscopic Study of Mercury Vapor Adsorption on Gold Nanoparticle Films, J. Colloid Interface Sci., 2002, 254, 49-55
    26. H. L. Zhang, S. D. Evans, J. R. Henderson, R. E. Miles, T. H. Shen, Vapour sensing using surface functionalized gold nanoparticles, Nanotechnology, 2002, 13 , 439-444
    27. C. S. Cheng, Y. Q. Chen, C. J. Lu, Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer, Talanta, 2007, 73, 358-365
    28. K. J. Chen, C. J. Lu, A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum, Talanta, 2010, 81, 1670-1675
    29. T. Karakouz, A. Vaskevich, I. Rubinstein, Polymer-Coated Gold Island Films as Localized Plasmon Transducers for Gas Sensing, J. Phys. Chem. B, 2008, 112, 14530-14538
    30. J. M. Bingham, J. N. Anker, L. E. Kreno, R. P. Van Duyne, Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy, J. Am. Chem. Soc., 2010, 17358-17359
    31. L. E. Kreno, J. T. Hupp,R. P. V. Duyne, Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing, Anal. Chem., 2010, 82, 8042-8046
    32. 林彥琇, 余政儒, 曾韋龍, 金奈米材料於感測器之應用, 化學, 第六十八卷, 第一期
    33. K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and Characterization of Au Colloid Monolayers , Anal. Chem., 1995, 67, 735-743
    34. S., T. Zhu, R. Hu, Z. Liu, Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array, Phys. Chem. Chem. Phys., 2002, 4, 6059-6062

    下載圖示
    QR CODE