研究生: |
黃明仁 Huang, Ming-Jen |
---|---|
論文名稱: |
利用第一原理探討材料在不同介質下電化學靜電位能與電場之轉換效率 A First-Principle Study on the Medium with Copper Surface of Electrostatic Potential and Field Conversion Rate |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
口試委員: |
葉丞豪
Yeh, Chen-Hao 張鈞智 Chang, Chun-Chih 蔡明剛 Tsai, Ming-Kang |
口試日期: | 2022/06/16 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 電催化 、第一原理 、靜電位能 、靜電場 |
英文關鍵詞: | First Principle, Electrostatic Potential, Electric Field |
研究方法: | 實驗設計法 、 次級資料分析 、 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202200752 |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電催化還原二氧化碳被認為是有效率減少大氣中溫室氣體的方法之一,電催化二氧化碳不僅能夠減少溫室氣體,同時將二氧化碳轉換為可被利用的燃料。從過去已發表的論文中得知銅具有在電化學環境下將二氧化碳轉換成各種碳氫化合物的能力,但是銅將二氧化碳轉換成碳氫化合物有兩個重要問題必須解決,分別是產物選擇性低跟高過電壓,而我們希望透過第一原理以微觀的角度分析電化學反應來解決這些問題。
雖然第一原理已開發出多種模擬材料的理論,但是過去受限於電腦運算力,模擬溶液的技術尚無法在產業上進行實際應用,因為溶液涉及了許多原子間作用力跟能量的計算,使得第一原理在溶液上的應用被限制。但是隨著高效率運算的快速進步,溶液的相關研究也進入蓬勃發展的階段。
我們使用維也納大學開發的VASP (Vienna ab initio Simulation) 來建立銅電極在真空跟水溶液環境下的模型,透過VASP設置電場參數來獲得銅電極在真空跟水溶液環境下的靜電位能、靜電場和電轉換效率的百分比。
Electrochemical reduction of CO2 has the potential to reduce greenhouse gas emissions while providing energy storage and producing chemical feedstocks. Two major challenge on CO2 reduction is low product selectivity and high over potential. We hoping the using of First Principle to analyze microscopic electrochemical reaction can improve product selectivity and lower the over potential.
First Principle have already developed serveral theories on solution model simulations, but restricting by the High Performance Computing. Solution simulation still not being used on practical application. Due to the calculation of atomic forces and energies of solvent are complexity. Nowadays, Powerful High Performance Computing also promoting the progress of solvated model researches.
We used Vienna Ab initio Simulation Package to constrct copper potential under water and vacuum conditions and tunning the electric parameter to estimate both water and vacuum condtion electrostatic potential, electric field and the exchange rate of electric power.
1. Friedlingstein, P.; O'Sullivan, M.; Jones, M. W.; Andrew, R. M.; Hauck, J.; Olsen, A.; Peters, G. P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Sys. Sci. Data 2020, 12 (4), 3269-3340.
2. Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y. M.; et al. Net-zero emissions energy systems. Sci. 2018, 360 (6396).
3. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111 (5), 3577-3613.
4. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119 (12), 7610-7672.
5. Rueter, G. Carbon capture technology loses out in Germany. 2013. https://www.dw.com/en/carbon-capture-technology-loses-out-in-germany/a-16999567 (accessed.
6. Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation – From fundamentals to current projects. Fuel 2016, 166, 276-296.
7. Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chemical Engineering Research and Design 2014, 92 (11), 2557-2567.
8. Studt, F.; Behrens, M.; Kunkes, E. L.; Thomas, N.; Zander, S.; Tarasov, A.; Schumann, J.; Frei, E.; Varley, J. B.; Abild-Pedersen, F.; et al. The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu-Based Catalysts. ChemCatChem 2015, 7 (7), 1105-1111.
9. Graves, C.; Ebbesen, S. D.; Mogensen, M.; Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renewable and Sustainable Energy Reviews 2011, 15 (1), 1-23.
10. Teeter, T. E.; Van Rysselberghe, P. Reduction of Carbon Dioxide on Mercury Cathodes. The Journal of Chemical Physics 1954, 22 (4), 759-760.
11. Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry, Vayenas, C. G., White, R. E., Gamboa-Aldeco, M. E. Eds.; Springer New York, 2008; pp 89-189.
12. Jermann, B.; Augustynski, J. Long-term activation of the copper cathode in the course of CO2 reduction. Electrochimica Acta 1994, 39 (11), 1891-1896.
13. Shiratsuchi, R.; Aikoh, Y.; Nogami, G. Pulsed Electroreduction of CO 2 on Copper Electrodes. J Electrochem Soc 1993, 140 (12), 3479-3482.
14. Lee, J.; Tak, Y. Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochimica Acta 2001, 46 (19), 3015-3022.
15. Clark, E. L.; Bell, A. T. Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO2. J. Am. Chem. Soc. 2018, 140 (22), 7012-7020.
16. Yano, J.; Yamasaki, S. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. Journal of Applied Electrochemistry 2008, 38 (12), 1721.
17. Ishimaru, S.; Shiratsuchi, R.; Nogami, G. Pulsed Electroreduction of CO[sub 2] on Cu-Ag Alloy Electrodes. J Electrochem Soc 2000, 147 (5), 1864.
18. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surface Science 1995, 335, 258-263.
19. Magnussen, O. M.; Groß, A. Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics. J. Am. Chem. Soc. 2019, 141 (12), 4777-4790.
20. Li, J.; Li, X.; Gunathunge Charuni, M.; Waegele Matthias, M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proceedings of the National Academy of Sciences 2019, 116 (19), 9220-9229.
21. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy 2017, 2 (4), 17031.
22. Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Marković, N. M. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chemistry 2009, 1 (6), 466-472.
23. Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. J. Am. Chem. Soc. 2018, 140 (25), 7787-7790.
24. Velasco-Velez, J.-J.; Wu Cheng, H.; Pascal Tod, A.; Wan Liwen, F.; Guo, J.; Prendergast, D.; Salmeron, M. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Sci. 2014, 346 (6211), 831-834.
25. Li, C.-Y.; Le, J.-B.; Wang, Y.-H.; Chen, S.; Yang, Z.-L.; Li, J.-F.; Cheng, J.; Tian, Z.-Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nature Materials 2019, 18 (7), 697-701.
26. Toney, M. F.; Howard, J. N.; Richer, J.; Borges, G. L.; Gordon, J. G.; Melroy, O. R.; Wiesler, D. G.; Yee, D.; Sorensen, L. B. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 1994, 368 (6470), 444-446.
27. Zhu, S.; Qin, X.; Yao, Y.; Shao, M. pH-Dependent Hydrogen and Water Binding Energies on Platinum Surfaces as Directly Probed through Surface-Enhanced Infrared Absorption Spectroscopy. J. Am. Chem. Soc. 2020, 142 (19), 8748-8754.
28. Rossmeisl, J.; Skúlason, E.; Björketun, M. E.; Tripkovic, V.; Nørskov, J. K. Modeling the electrified solid-liquid interface. Chem. Phys. Lett. 2008, 466 (1-3), 68-71.
29. Shin, C. Electrical Double-Layer Capacitors. 2021. https://encyclopedia.pub/entry/6168 (accessed 2022 5/04).
30. Ryu, J.; Wuttig, A.; Surendranath, Y. Quantification of Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction. Angew. Chem. Int. Ed. 2018, 57 (30), 9300-9304.
31. Ryu, J.; Surendranath, Y. Tracking Electrical Fields at the Pt/H2O Interface during Hydrogen Catalysis. J. Am. Chem. Soc. 2019, 141 (39), AR.
32. Sheng, T.; Lin, W. F.; Hardacre, C.; Hu, P. Role of water and adsorbed hydroxyls on ethanol electrochemistry on Pd: New mechanism, active centers, and energetics for direct ethanol fuel cell running in alkaline medium. J. Phys. Chem. C 2014, 118 (11), 5762-5772.
33. Iyemperumal, S. K.; Deskins, N. A. Evaluating Solvent Effects at the Aqueous/Pt(111) Interface. ChemPhysChem 2017, 18 (16), 2171-2190.
34. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of Chemical Physics 2014, 140 (8), 084106.
35. Björketun, M. E.; Zeng, Z.; Ahmed, R.; Tripkovic, V.; Thygesen, K. S.; Rossmeisl, J. Avoiding pitfalls in the modeling of electrochemical interfaces. Chem. Phys. Lett. 2013, 555, 145-148.
36. local potential determination. 2021. https://www.vasp.at/wiki/index.php/LVTOT (accessed 2022 5/04).
37. Taylor, C. D.; Wasileski, S. A.; Filhol, J. S.; Neurock, M. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73 (16).
38. Che, F.; Gray, J. T.; Ha, S.; Kruse, N.; Scott, S. L.; McEwen, J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catalysis 2018, 8 (6), 5153-5174.
39. Wang, X. P.; Li, X. B.; Chen, N. K.; Zhao, J. H.; Chen, Q. D.; Sun, H. B. Electric field analyses on monolayer semiconductors: The example of InSe. Phys. Chem. Chem. Phys. 2018, 20 (10), 6945-6950.
40. Mamatkulov, M.; Filhol, J. S. An ab initio study of electrochemical vs. electromechanical properties: The case of CO adsorbed on a Pt(111) surface. In Physical Chemistry Chemical Physics, 2011; Vol. 13, pp 7675-7684. DOI: 10.1039/c0cp01444c.
41. Yokoshiki, Y.; Nakamoto, T. On-Line Mixture Quantification to Track Temporal Change of Composition Using FAIMS. Sensors 2019, 19 (24).