研究生: |
蘇怡萍 |
---|---|
論文名稱: |
Serratia plymuthica 的分離及其蛋白質分解酵素的研究 Characterization of extracellular protease from the isolation Serratia plymuthica |
指導教授: | 李銘亮 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 蛋白質分解酵素 、耐冷菌 、氮源 、丙胺酸 |
英文關鍵詞: | Serratia plymuthica, protease, alanine |
論文種類: | 學術論文 |
相關次數: | 點閱:281 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自然環境中存在著許多可以適應寒冷環境的微生物,通稱為「適冷菌」,包括嗜冷菌和耐冷菌,有些可以在低溫狀態下產生具有高活性的酵素,稱之為「低溫活化酵素」。本實驗從家庭儲存食物的冰箱中取一些水樣或腐敗食物,選殖出一株在低溫環境下具有高產量的蛋白質分解酵素,以10%的SDS-gelatin-PAGE測定蛋白質分子量,估計約為48 kDa。根據菌種的生理特性鑑定結果,可得此菌種學名為Serratia plymuthica。
將此菌株培養在不同營養成份的培養液中,測量此菌種的生長情形及蛋白質分解酵素活性的變化。發現此菌株的生長會受到環境中L型纈胺酸、L型半胱胺酸、L型酥胺酸的抑制;DL型丙胺酸、L型絲胺酸、L型麩胺酸可促進此菌生長;而硫酸銨不影響細菌生長。
以上的氮源對酵素活性大小影響如下:在礦物培養基中,L型絲胺酸、L型麩胺酸的添加會抑制酵素活性;在含有1%明膠的礦物培養基中,L型半胱胺酸、硫酸銨的添加也會抑制酵素活性。但DL型丙胺酸除了可促進細菌的生長外,亦會隨著濃度的增加而促使酵素活性增大,在0.25%DL型丙胺酸存在時,可達最高值,但超過此濃度,則開始抑制使得酵素活性降低,故DL型丙胺酸的調控可能具有胞外分解酵素演化上的意義:當環境含量少時會酵素產生促進,但環境中含量多時則抑制酵素的產生,而直接從環境取得。
Serratia plymuthica, a psychrotropic bacterium isolated from a refrigerating environment was found to produce an extracellular protease functioning on a wide range of temperature from a low 4℃ to a moderate 37℃. Crude extracts of this enzyme was characterized regarding to its properties, its production and regulation of its enzyme activity. Particularly, effects on the growth of Serratia plymuthica and its extracellular protease production by varying amino acid end-products were extensively investigated.
Physically, a proteolytic enzyme activity separated on a sodium dodecyl sulfate-gelatin-polyacrylamide gel electrophoresis was located on a spot corresponding to 48 kDa.
Addition of L-valine, L-cystein monochloride and L-threonine as the carbon and energy sources to a mineral medium, exhibited an inhibitory effect on the growth of this bacterium. On the contrary, addition of DL-alanine, L-serine and L-glutamic acid as the carbon and energy sources to a mineral medium, an accelerating promotion of growth was observed. Whereas, using (NH4)2SO4 as a replaced nitrogen source in the same basal medium for culturing, no any effects were appeared.
Regulatory effects by various amino acids on the synthesis of extracellular protease by Serratia plymuthica were also evaluated. Its proteolytic activity accumulated in the growth medium was feedback inhibited by many different amino acids including L-serine, L-glutamic acid, or L-cystein monochloride and (NH4)2SO4 plus 1% gelatin as a protein source.
However, the most striking characteristic pattern of changing protease yields was exhibited by using DL-alanine as an interesting regulator. When increasing concentrations of DL-alanine (0 to 0.25%) were added to the culture media, yields of protease were also gradually increased until reaching a maximum level corresponding to 0.25% of DL-alanine. Beyond that, any concentrations of DL-alanine present in the medium exceeding 0.25% resulted in lowering yields of this extracellular enzyme. Apparently, Serratia plymuthica has evolved a very simple regulatory mechanism by using alanine both as a protease inducer and an inhibitor. When this bacterium senses a lower concentration of alanine in environment, it responses by producing more protease in order to harvest more amino acids substrates; otherwise, stops protease production.
Aguilar, A., T. Ingemansson, and E. Magnien. 1998. Extremophile microorganisms as cell factories:support from the European Union. Extremophiles. 2:367-373.
Aghajari, N., Feller, G., Gerday, C., and Haser, R. 1996. Crystallization and preliminary X-ray diffraction studies of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23 . Protein science. 5:2128-2129.
Aunstrup, K., Farum, and O. Andersen. 1977. U.S. Patent. 3827-9.
Bernlour, R. W., 1964. Postlogarithmic phase metabolism of sporulating microorganisms(Ⅰ)Protease of Bacillus licheniformis. J. Biol. Chem. 239:538-543.
Blenford, D. E. 1996. Winner drinks. Int. Food Ingr. 3:20-23.
Burnett, T. J., G. W. Shankwieler, and J. H. Hageman, 1981. Activation of Intracellular serine proteinase in Bacillus subtilis cells during sporulation, J. Bacteriol. 165:139-145.
Chaloupka, J. and P. Kreckova. 1966. Regulation of formation of protease in Bacillus megaterium. Ⅰ. The influence of amino acids on the enzyme formation. Folia Microbiol. 11:82-85.
Chesshyre, J. A. and Hipkiss, A. R. 1989. Low temperature stabilizes interferon alpha-2 against proteolysis in Methylophilus methylotrophus and Escherichia coli. Applied Microbiology and Biotechnology. 31:158-162.
Daatselaar, M. C. C. and W. Harder. 1974. Some aspects of extracellular proteolytic enzymes by a Marine Bacterium. Arch. Microbiol. 101:21-34.
Dalev P. G. Utilization of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour. Technol. 1994 48:265-76.
DeSantis, Pia C. 1983. Some observations on the use of enzymes in paper conservation. Journal of the American Institute for Conservation. 23(1):7- 27.
Eijsink, V.G.H., Veltman, O.R., Aukema, W., Vriend, G. and Venema, G. 1995. Structural determinants of the stability of thermolysin-like proteinases. Structural Biol. 2: 374-379.
Enzyme Nomenclature. 1978. Recommendations of the International Union of Biochemistry. New York. Academic press.
Feller, G., Payan, F., Theys, F., Qian, M., Haser, R., and Gerday, C. 1994. Stability and structural analysis of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur. J. Biochem. 222:441-447.
Feller, G., Thiry, M., Arpigny, J. L., and Gerday, C. 1991. Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA114. Gene 102:111-115.
Feller, G., Zekhnini, Z., Lamotte-Brasseur, J., and Gerday, C. 1997. Enzymes from cold-adapted microorganisms: The class β-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur. J. Biochem. 244: 186-191.
Frankena, J., H. W. Verseveld and A. H. Stouthamer. 1985. A continous culture study of the bioenergetic aspects of growth and production of extracellular protease in Bacillus lichenformis. Appl. Microbiol. Biotechnol. 22:169-176.
Gill, I., Lopez-Fandino, R., Jorba, X. and Vulfson, E. N. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microbial Technol. 18: 162-183.
Glenn, A. R.,1976. Production of extracellular proteins by bacteria. Annu. Rev. Microbiol., 30:41-62.
Gounot, A. M. 1991. Bacterial life at low temperature: physiological aspects and biotechnological implications. J. Appl. Bacteriol. 71:386-397.
Graham, D.E. and M.C. Phillips. 1979. Proteins at liquid interfaces. I. Kinetics of adsorption and surface denaturation. Journal Colloid Interface Science 70(3): 403-414.
Gunda, P. and Ralf, Malessa. 1998. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle x-ray scattering and fourier-transform infrared spectroscopy. J. Mol. Biol. 275: 389-402.
Hader, W., L. Dijkjuuizen. 1983. Physiological responses to nutrient limitation. Annu. Rev. Microbiol. 37:1-23.
Hageman, J. H., G. W. Shankweiler, P. R. Wall, K. Franich, G. W. McCowan, S. M. Cauble, J. Grajeda, and C. Quinones. 1984. Single, chemically defined sporulation medium for Bacillus subtilis: growth, sporulation, and extraceular protease production. J. Bacteriol. 160:438-441.
Hanlon, G. W., and N. A. Hodges. 1981. Bacitracin and protease production in relation to sporulation during exponential growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. J. Bacterial. 147:427-431.
Hanlon, G. W, N. A. Hodge, A. D. Russel. 1982. The in fluence of glucose, ammonium and magnesium availability on the production of protease and bactracin by Bacillus licheniformis. J. Gen. Microbiol. 128:845-851.
Hartley, B. S. 1960. Proteolytic enzymes. Ann. Rev. Biochem. 29: 45.
Herbert, RA. 1986. The ecology and physiology of psychrophilic microorganisms. In Herbert, R. A. & Cod, G. A. Microbes in Extreme Environments. pp 1-23. London:Academic Press.
Holzer, h. 1980. Control of proteolysis. Annu. Rev. Biochem. 49:63-91.
Hoshino, T., Ishizaki, K. and Sakamoto, T. 1997. Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Letters in Applied Microbiology. 25(1):70-2.
Kumar, C. G. and Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594.
Kumeta, H., Hoshino, T. and Goda, T.1999. Identification of a member of the serralysin family isolated from a psychrotrophic bacterium, Pseudomonas fluorescens 114. Bioscience, Biotechnology & Biochemistry. 63(7):1165-70.
Kenji, A., Kukizo, M.,Shuichiro, M. and Ryu, S.1995.Anaerobic synthesis of extracellular protease by soil bacterium bacillus sp.AM-23:purification and characterization of the enzymes. Soil biol.biochem. 27(11):1377-1382.
Loffler, A. 1986. Proteolytic enzymes: sources and applications. Food Technol. 40(12): 63-70.
May. B. K. and W. H. Elliott. 1968. Characteristic of extracellular protease formation by bacillus and its control by amino acid repression. Biochim. Biophys. Acta.157:607-615.
Moon, S. H. and S. J. parulekar. 1991. A parametric study of protease production in batch and fed-batch cultures of Bacillus firmus. Biotech. Bioeng. 37:467-483.
Morita, Y., Hasan, Q. and Sakaguchi, T.1998. Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Applied Microbiology & Biotechnology. 50(6):669-75.
Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriological Review. 39:144-167.
Nduwimana, j., Guenet, L., Dorval, I., Blayau, M., Gall, J. L.and Treut, A. L. 1995. Proteases. Ann. Biol. Clin.53: 251-264.
Neumark, R., and N. Citri.1962. Repression of protease formation in Bacillus cereus. Biochim. Biophys. Acta. 59:749-751.
O'carrol, P. 1996. A bio-active future. World of gredients. Nov./Dec: 28-30.
Oh, K. H., Seong, C. S., Lee, S. W., Kwon, O. S., Park, Y. S.1999. Isolation of a psychrotrophic Azospirillum sp. And characterization of its extracellular protease.FEMS MicrobiologyLetters.174(1):173-8.
Patel, T. R. and Jackman, D. M.1986. Susceptibility of psychrotrophic pseudomonads of milk origin to psychrotrophic bacteriophages. Applied and Environmental Microbiology. 51:446-448.
Priest, F. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41:711-753.
Priestdge, L., V. Gage, and J. Spizen. 1971. Protease activities during the course of sporulation in B. subtilis. J. Bacteriol. 107:815-823.
Rondon M. R., Goodman R. M., and Handelsman J. The earth’s bounty: assessing and accessing soil microbial diversity. Trens Biotechnol. 1999. 17:403-409.
Rosing J, Harris DA, Kemp A Jr, Slater EC. 1975. Nucleotide-binding properties of native and cold-treated mitochondrial ATPase. Biochim BiophysActa. 376(1):13-26.
Russell, N. J. 1990. Cold adaptation of microorganisms. Philosophical Transactions of the Royal Society of London. B36:595-611.
Schaeffer, P. 1969. Sporulation and production of antibiotics, exoenzymes, and exotoxins. Bacteriol. Rev. 33:48-71.
Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS. Lett. 452: 22-25.
Tanner, J. J., Hecht, R. M., and Krause, K. L. 1996. Determinants of enzyme thermostability observed in the molecular structure of Thermus aquatics D-glyceraldehyde-3-phosphate dehydrogenase at 2.5 a resolution. Biochemistry. 35:2597-2609.
Wandersman, C. 1989. Secretion, processing and activation of bacterial extracellular protease. Mol. Microbiol. 3:1825-1831.
Wang, J. J. and Shih, J. H. 1999. Fermentation production of Keratinase from bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J. Indust. Microbiol. & Biotechnol. 22:608-616.
Wouter, T. T. M., P. J. Buysman. 1977. Production of some exocellular enzymes by Bacillus licheniformis 7491 in chemostat cultures. FEMS Letters. 1:109-112.
蘇遠治,黃世佑,1971,微生物化學工程學,天然出版社。
邱偉鈞,2000,耐冷菌Pseudomonas sp. P90產生之金屬結合性蛋白質分解脢的基因選殖純化與分析,4-6。