簡易檢索 / 詳目顯示

研究生: 張晉豪
Jin-Hao Jhang
論文名稱: 中空硫化鎘奈米粒子之電鍍沈積製備及研究
Preparation of Hollow CdS Nanoparticles via Electrodeposition
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: hollow CdSAr plasma treatmentelectrodeposition
英文關鍵詞: 中空硫化鎘奈米粒子, 氬電漿處理, 電化學沉積
論文種類: 學術論文
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文,我們利用氬電漿(argon plasma)轟擊高定向熱解石墨(HOPG)表面而產生一均勻的表面缺陷。而這些均勻的缺陷會有較高的表面能(surface energy),使得鎘奈米粒子(Cadmium nanoparticles)較能夠均勻的沉積於石墨基材上;而無經過氬電漿轟擊的石墨表面,其本身因具有自然的斷面缺陷(edge),所以在沉積奈米粒子時容易對石墨表面具有選擇性,而傾向於沉積在斷面缺陷上。由實驗中發現,利用氬電漿轟擊石墨表面最佳的氣體壓力在8-20 mtorr之間;若氣體壓力過高,則會造成石墨表面的缺陷不緻密均勻,反而造成奈米粒子在石墨表面上的聚集。在電化學沉積過程中,我們發現溶解在電解液中的氧分子會在電極表面被還原成氫氧根離子(Hydroxide anions)而與鎘離子(cadmium cations)產生不溶性的氫氧化鎘(Cd(OH)2)奈米粒子;這個過程將會有效地增加石墨表面奈米粒子的密度。爾後,我們利用硫化氫氣體(H2S)與石墨表面上的氫氧化鎘或鎘奈米粒子在高溫(300℃)條件下進行取代反應生成硫化鎘奈米粒子(CdS nanoparticles);再利用X光光電子能譜儀(X-ray photoelectron spectroscopy)研究其表面化學組成之變化。其中我們觀察鎘元素束縛能之變化以及硫元素XPS強度的改變來證明硫化鎘奈米粒子反應在300℃下於10-15分鐘完成。此外,我們利用高解析度穿透式電子顯微鏡(High-resolution transmission microscopy)觀察硫化鎘奈米粒子之結晶性與其晶格影像。在穿透式電子顯微影像上可得知此硫化鎘奈米粒子為立方堆積(cubic-phase)而且是明顯的中空結構奈米粒子。中空結構之硫化鎘奈米粒子在先前文獻中已經被證實以及研究過,造成中空結構之原因被稱為Kirkendall effect。最後,我們利用低溫光子激發光光譜儀測量硫化鎘奈米粒子之光學性質。在實驗中可得到此硫化鎘奈米粒子之放光光譜於486 nm (2.55 eV)有一明顯的放光波峰,此放光波峰可解釋為能隙所造成的放光。而我們在相對較長波長498 nm (2.49 eV)之位置有發現一不明顯的放光波峰,而此可被解釋為奈米粒子表面缺陷所造成之放光。

    In this thesis, we used the argon plasma to treat a fresh graphite surface for generating the homogeneous defects. The defects have the higher surface energy which is similar to the edge on the native graphite surface; hence, the distribution of cadmium (Cd) nanoparticles on the graphite can be more homogeneous. In our experiments, we found that the flowing pressure in the range of 8-20 mtorr during the plasma treatment is the optimal condition. The plasma treatment at an excessive pressure results in the undesired aggregation of nanoparticles. In the electrodeposition process, the reduction of molecular oxygen in aqueous solution generates the hydroxide anion (OH-) and facilitates the cadmium cation (Cd2+) to form the solid cadmium hydroxide (Cd(OH)2(s)) on the graphite surface; and it can increase the higher particle density on the graphite surface than the case in absence of molecular oxygen. Subsequently, we synthesized CdS nanoparticles from Cd(OH)2/Cd0 nanoparticles with the exposure to H2S(g) (600 mtorr) at 300oC. The variation in the surface chemical composition of nanoparticles after the treatment of H2S was investigated with X-ray photoelectron spectroscopy (XPS). The formation of CdS from Cd(OH)2/Cd0 was completed in 10-15 min at 300oC. Based on the measurement of high-resolution transmission microscopy, it was concluded that the CdS nanostructure has a cubic crystal lattice and exhibits the hollow structure which is caused by the Kirkendall effect. Finally, the low-temperature Macro-photoluminescence spectra of the CdS nanoparticle shows an emission peak at 2.55 eV (486 nm) with a shoulder at 2.49 eV (498 nm), which are attributed to the direct band-gap transition and the transition at the surface-defect, respectively.

    Contents List of Chemical Compounds and Materials I List of instruments I List of Figures II List of Schemes and Table V Chapter 1. Introduction 1 2. Theories 5 2.1 Properties of semiconducting nanoparticles 5 2.2 Synthesis theory for nanoparticles (zero-dimension) 8 2.2.1 Homogeneous nucleation synthesis of nanoparticles 8 2.2.2 Heterogeneous nucleation synthesis of nanoparticles 11 2.3 The surface characteristics of graphite 13 3. Experiments and Results 15 3.1 Experimental procedures 15 3.1.1 Argon plasma treatments of HOPG surface 15 3.1.2 The electrodeposition of cadmium nanoparticles 15 3.1.3 The synthesis of cadmium sulfide nanoparticles 18 3.1.4 X-ray Photoelectron Spectroscopy 19 3.1.5 Atomic Force Microscopy 19 3.1.6 High-Resolution Transmission Microscopy 20 3.1.7 Macro-Photoluminescence Spectroscopy 20 3.2 Results and Discussion 22 3.2.1 The creativity of graphite surface defects by argon plasma 22 3.2.2 The cadmium nanoparticles' electrodeposition by the two-steps method 26 3.2.3 The synthesis of CdS nanoparticles 36 3.2.3.1 Research by the X-ray Photoelectron Spectroscopy 36 3.2.3.2 H2S substitution at 300oC 36 3.2.3.3 H2S substitution at 25oC (Room temperature) 39 3.2.4 Research by the High-Resolution Transmission Microscopy 43 3.2.5 Research by the Macro-Photoluminescence Spectroscopy 46 4. Conclusion 49 Reference 51

    1.Zach, M. P.; Ng, K. H.; Penner, R. M., Science 2000, 290 (5499), 2120-2123.
    2.Borel, J. P., Surface Science 1981, 106 (1-3), 1-9.
    3.van Dijken, A.; Janssen, A. H.; Smitsmans, M. H. P.; Vanmaekelbergh, D.; Meijerink, A., Chem. Mat. 1998, 10 (11), 3513-3522.
    4.Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T., Science 2003, 299 (5614), 1874-1877.
    5.Lei, Y.; Chim, W. K., Journal of the American Chemical Society 2005, 127 (5), 1487-1492.
    6.Lei, Y.; Chim, W. K.; Sun, H. P.; Wilde, G., Appl. Phys. Lett. 2005, 86 (10), 3.
    7.F. J. Owens, C. P. P., The physics and chemistry of nanosolids. Wiley interscience: New Jersey, 2008.
    8.Cao, G., NANOSTRUCTURES&NANOMATERIALS Synthesis, Properties & Applications. Imperial College Press: London, 2004.
    9.Stabel, A.; Eichhorst-Gerner, K.; Rabe, J. P.; Gonzalez-Elipe, A. R., Langmuir 1998, 14 (25), 7324-7326.
    10.Haruta, A., Chem. Rec. 2003, 3 (2), 75-87.
    11.Morkoc, H.; Mohammad, S. N., Science 1995, 267 (5194), 51-55.
    12.Morkoc, H.; Strite, S.; Gao, G. B.; Lin, M. E.; Sverdlov, B.; Burns, M., Journal of Applied Physics 1994, 76 (3), 1363-1398.
    13.Rajh, T.; Micic, O. I.; Lawless, D.; Serpone, N., Journal of Physical Chemistry 1992, 96 (11), 4633-4641.
    14.Higashijima, T.; Fuchigami, T.; Imasaka, T.; Ishibashi, N., Anal. Chem. 1992, 64 (7), 711-714.
    15.Heumann, E.; Bar, S.; Rademaker, K.; Huber, G.; Butterworth, S.; Diening, A.; Seelert, W., Appl. Phys. Lett. 2006, 88 (6), 3.
    16.Stevens, B. J.; Childs, D. T. D.; Groom, K. M.; Hopkinson, M.; Hogg, R. A., Appl. Phys. Lett. 2007, 91 (12), 3.
    17.Shimidzu, T.; Iyoda, T.; Koide, Y., Journal of the American Chemical Society 1985, 107 (1), 35-41.
    18.Chianelli, R. R.; Siadati, M. H.; De la Rosa, M. P.; Berhault, G.; Wilcoxon, J. P.; Bearden, R.; Abrams, B. L., Catal. Rev.-Sci. Eng. 2006, 48 (1), 1-41.
    19.Somers, R. C.; Bawendi, M. G.; Nocera, D. G., Chem. Soc. Rev. 2007, 36 (4), 579-591.
    20.Medintz, I. L.; Berti, L.; Pons, T.; Grimes, A. F.; English, D. S.; Alessandrini, A.; Facci, P.; Mattoussi, H., Nano Lett. 2007, 7 (6), 1741-1748.
    21.Algar, W. R.; Krull, U. J., Anal. Chim. Acta 2007, 581 (2), 193-201.
    22.Lu, Y.; Liu, G. L.; Lee, L. P., Nano Lett. 2005, 5 (1), 5-9.
    23.Sapra, S.; Sarma, D. D., Phys. Rev. B 2004, 69 (12), 7.
    24.Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E., Journal of the American Chemical Society 1988, 110 (10), 3046-3050.
    25.Hong, X.; Posadas, A.; Zou, K.; Ahn, C. H.; Zhu, J., Phys. Rev. Lett. 2009, 102 (13), 4.
    26.Fang, T.; Konar, A.; Xing, H.; Jena, D., Phys. Rev. B 2008, 78 (20), 8.
    27.Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P., Phys. Rev. Lett. 2008, 101 (9), 4.
    28.Li, Q. G.; Penner, R. M., Nano Lett. 2005, 5 (9), 1720-1725.
    29.Li, Q.; Walter, E. C.; van der Veer, W. E.; Murray, B. J.; Newberg, J. T.; Bohannan, E. W.; Switzer, J. A.; Hemminger, J. C.; Penner, R. M., J. Phys. Chem. B 2005, 109 (8), 3169-3182.
    30.Liu, H.; Penner, R. M., J. Phys. Chem. B 2000, 104 (39), 9131-9139.
    31.Bourg, M. E.; van der Veer, W. E.; Gruell, A. G.; Penner, R. M., Nano Lett. 2007, 7 (10), 3208-3213.
    32.Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S., Science 2009, 323 (5914), 610-613.
    33.Zhou, S. Y.; Siegel, D. A.; Fedorov, A. V.; Lanzara, A., Phys. Rev. Lett. 2008, 101 (8), 4.
    34.Anderson, M. A.; Gorer, S.; Penner, R. M., J. Phys. Chem. B 1997, 101 (31), 5895-5899.
    35.Gorer, S.; Ganske, J. A.; Hemminger, J. C.; Penner, R. M., Journal of the American Chemical Society 1998, 120 (37), 9584-9593.
    36.A. Scheludko, M. T., Bull. Acad. Bulg. Sci. Phys. 1952, 3, 61.
    37.Penner, R. M., J. Phys. Chem. B 2001, 105 (37), 8672-8678.
    38.Morcos, I., J. Chem. Phys. 1972, 57 (4), 1801-&.
    39.Tracz, A.; Wegner, G.; Rabe, J. P., Langmuir 1993, 9 (11), 3033-3038.
    40.Ahn, Y. O.; Seidl, M., Journal of Applied Physics 1995, 77 (11), 5558-5562.
    41.Penner, R. M., J. Phys. Chem. B 2002, 106 (13), 3339-3353.
    42.Ueda, M.; Dietz, H.; Anders, A.; Kneppe, H.; Meixner, A.; Plieth, W., Electrochim. Acta 2002, 48 (4), 377-386.
    43.Sandmann, G.; Dietz, H.; Plieth, W., J. Electroanal. Chem. 2000, 491 (1-2), 78-86.
    44.Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H., Surface and Interface Analysis 1981, 3 (5), 211-225.
    45.Fan, H. J.; Gosele, U.; Zacharias, M., Small 2007, 3 (10), 1660-1671.
    46.Dai, Z. H.; Zhang, J.; Bao, J. C.; Huang, X. H.; Mo, X. Y., J. Mater. Chem. 2007, 17 (11), 1087-1093.
    47.Cabot, A.; Smith, R. K.; Yin, Y. D.; Zheng, H. M.; Reinhard, B. M.; Liu, H. T.; Alivisatos, A. P., ACS Nano 2008, 2 (7), 1452-1458.
    48.Lin, G. F.; Zheng, J. W.; Xu, R., J. Phys. Chem. C 2008, 112 (19), 7363-7370.
    49.Chang, S. S., Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2004, 106 (1), 56-62.
    50.Andrianasolo, B.; Champagnon, B.; Ferrari, M.; Neuroth, N. In NONLINEAR EFFECTS IN MICROCRYSTALLINE SEMICONDUCTORS, Elsevier Science Bv: 1991; pp 306-308.
    51.Ramaniah, L. M.; Nair, S. V. In ELECTRONIC-STRUCTURE OF SEMICONDUCTOR QUANTUM DOTS, Elsevier Science Bv: 1995; pp 245-250.
    52.vanDijken, A.; Vanmaekelbergh, D.; Meijerink, A., Chem. Phys. Lett. 1997, 269 (5-6), 494-499.
    53.Trindade, T.; O'Brien, P.; Pickett, N. L., Chem. Mat. 2001, 13 (11), 3843-3858.
    54.Janet, C. M.; Viswanath, R. P., Nanotechnology 2006, 17 (20), 5271-5277.
    55.Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi, W.; Hoffmann, M. R., J. Phys. Chem. C 2008, 112 (32), 12069-12073.
    56.Aletru, C.; Greaves, G. N.; Sankar, G., J. Phys. Chem. B 1999, 103 (20), 4147-4152.
    57.Nair, P. K.; Daza, O. G.; Readigos, A. A. C.; Campos, J.; Nair, M. T. S., Semicond. Sci. Technol. 2001, 16 (8), 651-656.
    58.Mane, R. S.; Pathan, H. M.; Lokhande, C. D.; Han, S. H. In An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells, Pergamon-Elsevier Science Ltd: 2006; pp 185-190.
    59.Liu, X. Q.; Xu, Z. L.; Liu, Y. F.; Shen, Y. S., Sens. Actuator B-Chem. 1998, 52 (3), 270-273.
    60.Guo, Z.; Li, M. Q.; Liu, J. H., Nanotechnology 2008, 19 (24), 8.

    無法下載圖示 本全文未授權公開
    QR CODE