研究生: |
謝怡婷 Hsieh, Yi-Ting |
---|---|
論文名稱: |
基於行動樣式評估視覺化系統之探索研究 Evaluation of Visualization Systems based on Action Patterns Analysis |
指導教授: |
吳怡瑾
Wu, I-Chin |
學位類別: |
碩士 Master |
系所名稱: |
圖書資訊學研究所 Graduate Institute of Library and Information Studies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 複雜任務 、知識行動樣式 、搜尋策略 、視覺輔助系統 |
英文關鍵詞: | Complex tasks, Epistemic action patterns, Search strategy, Visual aid system |
DOI URL: | http://doi.org/10.6345/NTNU201900808 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在資訊爆炸的時代裡,各種資訊在網路裡形成人類難以直接收集、管理和處理的巨量資料,就算經過整理,也較難以直觀的方式看出資料想表達出的訊息。巨量資料不只在收集與儲存很重要,資料分析與表現也十分重要,也就是如何幫助人們理解與分析大量的資料,並及時做出決策已成為重要議題,這也是近年視覺化表達研究與相關輔助工具在各領域廣受重視的原因。
本研究主要探討出視覺化工具對決策的輔助效益,研究主要以EDIFICEPVR(複雜的認知活動中人與訊息之間互動的認知與設計)架構之32 個知識行動樣式(Epistemic Action Patterns, EAPs),瞭解視覺化工具或者與知識行動樣式(EPAs)的關聯。研究採用兩個案,第一個案為工業電力視覺化系統,預計採用實驗室開發之視覺化輔助系統,其中包含數值曲線圖、符號化後曲線圖、熱圖、查詢表格與分群結果呈現,以幫助使用者對機器產生的電力資料可進行巨觀與微觀的分析與比較。第二個案為主題知識地圖,透過本實驗室開發之另一個視覺化輔助系統,其中包含主題地圖、路徑推薦、主題階層樹、搜索工具與字詞推薦,以幫助使用者在大量資訊中快速且正確地找到所需的訊息。個案一與二分別透過側錄軟體評估系統專家與新手的EPAs 與透過系統有較好與較差的任務表現學習者的EPAs,藉以分析系統操作行為的差異以了解視覺化系統對不同使用者的效益。
結果顯示,專家與任務表現較佳之受試者對於新手與任務表現較差之受試者,在進行任務時所採用的EPAs 與視覺輔助工具有所異同,顯見其搜尋策略並不相同,研究將於後續整理評估結果以了解視覺化系統對領域專家與新手在進行複雜決策任務的幫助,進而改善系統使之發揮更大的效益。
In the era of information explosion, various kinds of information on the Internet form huge amounts of data that humans cannot directly collect, manage, and process. Even after sorting out, it is difficult to understand what the information wants to express intuitively. A huge amount of data is not only important for collection and storage, but also for data analysis and interpretation. How to assist people to understand and analyzea large amount of data and make timely decisions has become an important issue. This is also the reasons why the research on visual interpretation and related aid tools are widely recognized in various fields.
This study mainly explores how the visualization tools benefits decision-making. The research contributes to use 32 epistemic action patterns of the EDIFICE-PVR (Epistemology and Design of human-Information Interaction in complex Cognitive Activities-Properties of Visual Representations), to understand visualization tools or associations with epistemic action patterns. The study used two cases. The first case was the industrial electricity consumption visualization system. It is expected to use laboratory-developed visual aid system that includes numerical graphs, symbolized graphs, heat maps, query tables, and clustered results. So that users are able to analyze and compare machine-generated power information in macro and micro aspects. The second case is the subject-oriented visualization tool, which includes topic maps, path recommendations, topic tree, search tools and term suggestion to help users find the information they need quickly and correctly in huge amounts of information. Case 1 and Case 2 respectively evaluate the EPAs of experts and novices through the recording software assessment system and the EPAs of learners with better and worse tasks through the system. It is used to analyze the differences in system operation behavior to understand the benefits of the visualization system for different users.
The results show that the EPAs and visual aids used by experts and novices in their missions are different, and their search strategies are not the same. The research will sort out the results of the assessment to understand how the visualization system can help domain experts and novices in conducting complex decision-making tasks, thereby improving the system to make it more effective.
中文文獻:
楊正仁(2002)。資訊視覺化呈現之發展與挑戰。資訊傳播與圖書館學,9(2),41-50。
謝吉隆、沈柏辰、楊立偉(2015)。輔助新聞檢索之視覺化介面實作與使用者評估。圖書資訊學研究,9(2),149-189。
洪國倫(2015)。整合式介面對於不同困難度任務於搜索效益之研究(未出版之碩士論文)。天主教輔仁大學,新北市。
Shandy Tsai (2017) 資料視覺化Data Visualization:圖表設計。檢自於:
https://medium.com/uxeastmeetswest/%E8%B3%87%E6%96%99%E8%A6%96%E8%A6%BA%E5%8C%96data-visualization
%E5%9C%96%E8%A1%A8%E8%A8%AD%E8%A8%88-9ef17943a2d4
英文文獻:
Alexandre D. S., & Tavares, J. M. R. S. (2010). Introduction of human perception in visualization. International Journal of Imaging and Robotics, 4, 60–70.
Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. Morgan Kaufmann.
Ericsson, K. A., & Hastie, R. (1994). Contemporary approaches to the study of thinking and problem solving. In R. J. Sternberg (Ed.), Handbook of perception and cognition (2nd ed.). Thinking and problem solving (pp. 37-79). San Diego, CA, US: Academic Press.
Fidel, R. (2012). Human information interaction: An ecological approach to information behavior. Cambridge, MA: MIT. doi: 10.1109/WiCom.2008.3052
Heo, M. & Hirtle, S. C. (2001). An empirical comparison of visualization tools to assist information retrieval on the Web. Journal of Association for Information Science and Technology, 52(8), 666-675.
Interaction Design Fondation (2018). Information visualization – A brief introduction. Retrieved from: https://www.interaction design.org/literature/article/informationvisualization- a-brief-introduction.
Joho H., Sanderson M., Beaulieu M. (2004) A Study of User Interaction with a Concept-Based Interactive Query Expansion Support Tool. In: McDonald S., Tait J. (eds) Advances in Information Retrieval. ECIR 2004. Lecture Notes in Computer Science, vol 2997. (pp.42-56). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-24752-4_4
Julian Villafuerte (2017). When Qlik Sense meets Ecobici. Qlik Freak. Retrieved from: https://qlikfreak.wordpress.com/2017/08/30/when-qlik-sense-meets-ecobici/.
Julien, C-A, Leide, J. E. & Bouthillier, F. (2008). Controlled User Evaluations of Information Visualization Interfaces for Text Retrieval: Literature Review and Meta-Analysis. Journal of the American Society for Information Science & Technology, 59(6), 1012-1024.
Kangasrääsiö, A., Głowacka, D., Ruotsalo, T. Peltonen, J., Eugster, MJA, Konyushkova, K., Athukorala, K., Kosunen, I., Reijonen, A., Myllymäki, P., Jacucci, G., & Kaski, S. (2014). Interactive visualization of search intent for exploratory information retrieval. International Conference on Machine Learning Workshop on Crowdsourcing and Human Computing, Beijing, China.
Knauff, M. & Wolf, A. G. (2010). Complex Cognition: The Science of Human Reasoning, Problem-Solving, and Decision-Making. Cognitive Processing, 11(2), 99-102. doi: 10.1007/s10339-010-0362-z
Nazemi, K., Burkhardt, D., Hoppe, D., Nazemi, M., & Kohlhammer, J. (2015). Webbased evaluation of information visualization. Procedia Manufacturing, 3, 5527- 5534.
Peltonen, J., Lin, Z., Järvelin, K., & Nummenmaa, J.(2018) PIHVI: Online Forum Posting Analysis with Interactive Hierarchical Visualization. In Proceedings of ESIDA 2018, 2nd ACM IUI Workshop on Exploratory Search and Interactive Data Analytics, CEUR-WS.
Peng, C. F. & Liao, W. H. (2016). Evaluation of Interactive Data Visualization Tools Based on Gaze and Mous Trackig. Proceedings of the 2016 IEEE International Symposium on Multimedia. 431-434. doi: 10.1109/ISM.2016.0099
Reaction (n.d.). In Oxford online dictionary (17th ed.). Retrieved from:
https://en.oxforddictionaries.com/definition/reaction Rouse M. (2017). Data visualization. Retrieved from: http://searchbusinessanalytics.techtarget.com/definition/data-visualization.
Ruotsalo, T., Jacucci, G., Myllymäki, P. & Kaski, S. (2015). Interactive intent modeling: Information discovery beyond search. Communications of the ACM, 58(1), 86-92.
Santos, B. S. (2008). Evaluating Visualization Techniques and Tools: What Are the Main Issues. Proceedings of 2008 AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods For information Visualization (BELIV’08), Florence, Italy.
Sedig, K. & Parsons, P. (2013). Interaction Design for Complex Cognitive Activities with Visual Representations: A Pattern-Based Approach Theory. Transactions on Human-Computer Interaction, 5(2), pp.84 -113.
What is Visual Perception? - Definition & Theory. Retrieved from:
https://study.com/academy/lesson/what-is-visual-perception-definition-theoryquiz. html#lesson
Williams, R., Scholtz, J., Blaha, L. M., Franklin, L., & Huang, Z.(2018). Evaluation of Visualization Heuristics. In: Kurosu M. (eds) Human-Computer Interaction. Theories, Methods, and Human Issues. HCI 2018. Lecture Notes in Computer Science, vol 10901. Springer, Cham. doi: 10.1007/978-3-319-91238-7_18
Zhang, F. & Deng, S. (2008). Studies on the Visualization for Web Information Retrieval. Proceedings of 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. 1-4. doi: 10.1109/WiCom.2008.3052